Mostrar el registro sencillo del ítem

dc.contributor.author
Valencia, Felipe J.  
dc.contributor.author
Santiago, José  
dc.contributor.author
González, Rafael I.  
dc.contributor.author
González Arrabal, Raquel  
dc.contributor.author
Ruestes, Carlos Javier  
dc.contributor.author
Perez Diaz, Miguel Alfredo  
dc.contributor.author
Monclus, Miguel A.  
dc.contributor.author
Molina Aldareguia, Jon  
dc.contributor.author
Nuñez, Pablo Diaz  
dc.contributor.author
Munoz, Francisco  
dc.contributor.author
Kiwi, Miguel  
dc.contributor.author
Perlado, Jose M.  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.date.available
2022-10-14T19:47:22Z  
dc.date.issued
2021-01  
dc.identifier.citation
Valencia, Felipe J.; Santiago, José; González, Rafael I.; González Arrabal, Raquel; Ruestes, Carlos Javier; et al.; Nanoindentation of Amorphous Carbon: a combined experimental and simulation approach; Elsevier; Acta Materialia; 203; 1-2021; 1-11  
dc.identifier.issn
1359-6454  
dc.identifier.uri
http://hdl.handle.net/11336/173343  
dc.description.abstract
Amorphous carbon (aC), in particular diamond-like carbon (DLC), is one of the most studied and promising coating materials, but many of the atomic-scale mechanisms involved in their plastic deformation process are not fully understood. The mechanical response of non-hydrogenated DLC films with different sp3 concentrations is investigated using nanoindentation experiments, ab-initio simulations, and classical molecular dynamics simulations. Experimental characterization is carried out with Raman spectroscopy and Electron Energy Loss Spectroscopy (EELS). Ab-initio and classical simulations show good agreement for sp1, sp2 and sp3 content of in-silico samples. Elastic modulus and hardness of DLC films increase with sp3 content, for sp3 between 10% and 55%, and excellent agreement is obtained between experiments and simulations. Simulated strain distributions are shown to be highly anisotropic, unlike continuum-scale predictions for the use of a perfectly spherical indenter in an amorphous solid. MD simulations also reveal two different plasticity modes depending on the sp3 level of the indented sample. For films with sp3 concentrations less than 40%, plasticity is mainly mediated by the sp2 to sp3 transition. For larger sp3 concentrations, DLC plastic deformation is attributed to densification due to bond rearrangement. All in all, our work offers a comprehensive study of DLC, revealing unexpected plastic deformation mechanisms that had not been considered before. Our study might help to the fundamental understanding of amorphous carbon coatings for both scientific and technological purposes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AMORPHOUS CARBON  
dc.subject
DLC  
dc.subject
MOLECULAR DYNAMICS  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Nanoindentation of Amorphous Carbon: a combined experimental and simulation approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-13T16:42:58Z  
dc.journal.volume
203  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Valencia, Felipe J.. Universidad Mayor; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile  
dc.description.fil
Fil: Santiago, José. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: González, Rafael I.. Universidad Mayor; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile  
dc.description.fil
Fil: González Arrabal, Raquel. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina  
dc.description.fil
Fil: Perez Diaz, Miguel Alfredo. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Monclus, Miguel A.. Institutos Madrileño de Estudios Avanzados; España  
dc.description.fil
Fil: Molina Aldareguia, Jon. Institutos Madrileño de Estudios Avanzados; España  
dc.description.fil
Fil: Nuñez, Pablo Diaz. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Munoz, Francisco. Universidad de Chile; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile  
dc.description.fil
Fil: Kiwi, Miguel. Universidad de Chile; Chile. Centro Para El Desarrollo de la Nanociencia y Nanotecnología; Chile  
dc.description.fil
Fil: Perlado, Jose M.. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina. Universidad Mayor; Chile  
dc.journal.title
Acta Materialia  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1359645420309022  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.actamat.2020.116485