Mostrar el registro sencillo del ítem
dc.contributor.author
Saffarini, Mohammed H.
dc.contributor.author
Voyiadjis, George Z.
dc.contributor.author
Ruestes, Carlos Javier
dc.contributor.author
Yaghoobi, Mohammadreza
dc.date.available
2022-10-14T19:03:43Z
dc.date.issued
2021-01
dc.identifier.citation
Saffarini, Mohammed H.; Voyiadjis, George Z.; Ruestes, Carlos Javier; Yaghoobi, Mohammadreza; Ligament size dependency of strain hardening and ductility in nanoporous gold; Elsevier; Computational Materials Science; 186; 1-2021; 1-20
dc.identifier.issn
0927-0256
dc.identifier.uri
http://hdl.handle.net/11336/173337
dc.description.abstract
Nanoporous (NP) metals with ligament sizes up to a few tens of nm show exceptional mechanical properties such as high strength and stiffness per weight. While their elasticity and yield strength have been the subject of numerous studies, less is known about the plastic deformability of these materials under large compressive and tensile strains. In this study, the effect of ligament size is investigated using large-scale atomistic simulations to probe the elastic response, plastic response, and deformation mechanisms of nanoporous gold under uniaxial compression and tension to strains in excess of 60 percent. This paper explores the full range of the material response under uniaxial loading, focusing on the modifications to strain hardening under compression and ductility and delayed failure under tension. It was found that the elastic modulus experiences a compression-tension asymmetry that decreases with ligament size increase. Under compression, strain hardening is found to be ligament size dependent. This size dependency can be explained by the coupling effect of the change in surface area to solid volume ratio evolution and defects accumulation. Under tension, the material shows higher ductility with ligament size increase causing a delay in failure. This is attributed to differences in dislocation density. The results reported in this work will help in evaluating the effect of ligament size on the material response, and eventually enhance the design of novel nanoporous foams with tailored mechanical response.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
LARGE SCALE ATOMISTIC SIMULATION
dc.subject
SIZE EFFECT
dc.subject
STRAIN HARDENING
dc.subject
TENSILE DUCTILITY
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Ligament size dependency of strain hardening and ductility in nanoporous gold
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-10-13T16:42:53Z
dc.journal.volume
186
dc.journal.pagination
1-20
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Saffarini, Mohammed H.. State University of Louisiana; Estados Unidos
dc.description.fil
Fil: Voyiadjis, George Z.. State University of Louisiana; Estados Unidos
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
dc.description.fil
Fil: Yaghoobi, Mohammadreza. University of Michigan; Estados Unidos
dc.journal.title
Computational Materials Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025620304110
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2020.109920
Archivos asociados