Mostrar el registro sencillo del ítem

dc.contributor.author
Saffarini, Mohammed H.  
dc.contributor.author
Voyiadjis, George Z.  
dc.contributor.author
Ruestes, Carlos Javier  
dc.contributor.author
Yaghoobi, Mohammadreza  
dc.date.available
2022-10-14T19:03:43Z  
dc.date.issued
2021-01  
dc.identifier.citation
Saffarini, Mohammed H.; Voyiadjis, George Z.; Ruestes, Carlos Javier; Yaghoobi, Mohammadreza; Ligament size dependency of strain hardening and ductility in nanoporous gold; Elsevier; Computational Materials Science; 186; 1-2021; 1-20  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/173337  
dc.description.abstract
Nanoporous (NP) metals with ligament sizes up to a few tens of nm show exceptional mechanical properties such as high strength and stiffness per weight. While their elasticity and yield strength have been the subject of numerous studies, less is known about the plastic deformability of these materials under large compressive and tensile strains. In this study, the effect of ligament size is investigated using large-scale atomistic simulations to probe the elastic response, plastic response, and deformation mechanisms of nanoporous gold under uniaxial compression and tension to strains in excess of 60 percent. This paper explores the full range of the material response under uniaxial loading, focusing on the modifications to strain hardening under compression and ductility and delayed failure under tension. It was found that the elastic modulus experiences a compression-tension asymmetry that decreases with ligament size increase. Under compression, strain hardening is found to be ligament size dependent. This size dependency can be explained by the coupling effect of the change in surface area to solid volume ratio evolution and defects accumulation. Under tension, the material shows higher ductility with ligament size increase causing a delay in failure. This is attributed to differences in dislocation density. The results reported in this work will help in evaluating the effect of ligament size on the material response, and eventually enhance the design of novel nanoporous foams with tailored mechanical response.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LARGE SCALE ATOMISTIC SIMULATION  
dc.subject
SIZE EFFECT  
dc.subject
STRAIN HARDENING  
dc.subject
TENSILE DUCTILITY  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Ligament size dependency of strain hardening and ductility in nanoporous gold  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-13T16:42:53Z  
dc.journal.volume
186  
dc.journal.pagination
1-20  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Saffarini, Mohammed H.. State University of Louisiana; Estados Unidos  
dc.description.fil
Fil: Voyiadjis, George Z.. State University of Louisiana; Estados Unidos  
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina  
dc.description.fil
Fil: Yaghoobi, Mohammadreza. University of Michigan; Estados Unidos  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025620304110  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2020.109920