Mostrar el registro sencillo del ítem
dc.contributor.author
Vasudevan, Ajay
dc.contributor.author
Negri, Pablo Augusto
dc.contributor.author
Di Ielsi, Camila
dc.contributor.author
Linares Barranco, Bernabe
dc.contributor.author
Serrano Gotarredona, Teresa
dc.date.available
2022-10-14T17:00:29Z
dc.date.issued
2022-08
dc.identifier.citation
Vasudevan, Ajay; Negri, Pablo Augusto; Di Ielsi, Camila; Linares Barranco, Bernabe; Serrano Gotarredona, Teresa; SL-Animals-DVS: event-driven sign language animals dataset; Springer; Pattern Analysis And Applications; 25; 3; 8-2022; 505-520
dc.identifier.issn
1433-7541
dc.identifier.uri
http://hdl.handle.net/11336/173298
dc.description.abstract
Non-intrusive visual-based applications supporting the communication of people employing sign language for communication are always an open and attractive research field for the human action recognition community. Automatic sign language interpretation is a complex visual recognition task where motion across time distinguishes the sign being performed. In recent years, the development of robust and successful deep-learning techniques has been accompanied by the creation of a large number of databases. The availability of challenging datasets of Sign Language (SL) terms and phrases helps to push the research to develop new algorithms and methods to tackle their automatic recognition. This paper presents ‘SL-Animals-DVS’, an event-based action dataset captured by a Dynamic Vision Sensor (DVS). The DVS records non-fluent signers performing a small set of isolated words derived from SL signs of various animals as a continuous spike flow at very low latency. This is especially suited for SL signs which are usually made at very high speeds. We benchmark the recognition performance on this data using three state-of-the-art Spiking Neural Networks (SNN) recognition systems. SNNs are naturally compatible to make use of the temporal information that is provided by the DVS where the information is encoded in the spike times. The dataset has about 1100 samples of 59 subjects performing 19 sign language signs in isolation at different scenarios, providing a challenging evaluation platform for this emerging technology.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EVENT-BASED DATASET
dc.subject
SIGN LANGUAGE
dc.subject
SPIKING NEURAL NETWORK ARCHITECTURES
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
SL-Animals-DVS: event-driven sign language animals dataset
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-22T16:16:01Z
dc.journal.volume
25
dc.journal.number
3
dc.journal.pagination
505-520
dc.journal.pais
Alemania
dc.description.fil
Fil: Vasudevan, Ajay. Universidad de Sevilla; España
dc.description.fil
Fil: Negri, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Di Ielsi, Camila. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Linares Barranco, Bernabe. Universidad de Sevilla; España
dc.description.fil
Fil: Serrano Gotarredona, Teresa. Universidad de Sevilla; España
dc.journal.title
Pattern Analysis And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10044-021-01011-w
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10044-021-01011-w
Archivos asociados