Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Minimum weighted clique cover on claw-free perfect graphs

Bonomo, FlaviaIcon ; Oriolo, Gianpaolo; Snels, Claudia
Fecha de publicación: 01/2021
Editorial: John Wiley & Sons Inc.
Revista: Journal of Graph Theory
ISSN: 0364-9024
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación; Matemática Aplicada

Resumen

The first combinatorial algorithm for the minimum weighted clique cover (MWCC) in a claw-free perfect graph $G$ due to Hsu and Nemhauser dates back to 1984. It is essentially a ``dual´´ algorithm as it relies on any algorithm for the maximum weighted stable set (MWSS) problem in claw-free graphs and, taking into account the best known complexity for the latter problem, its complexity is $O(|V(G)|^{5})$. More recently, Chudnovsky and Seymour introduced a composition operation, strip-composition, in order to define their structural results for claw-free graphs; however, this composition operation is general and applies to non-claw-free graphs as well. In this paper, we show that a MWCC of a perfect strip-composed graph, with the basic graphs belonging to a class ${cal G}$, can be found in polynomial time, provided that the mwcc problem can be solved on ${cal G}$ in polynomial time. For the case of claw-free perfect strip-composed graphs, the algorithm can betailored so that it never requires the computation of a MWSS on the strips and can be implemented as to run in $O(|V(G)|^{3})$ time. Finally, building upon several results from the literature, we show how to deal with non-strip-composed claw-free perfect graphs, and therefore compute a MWCC in a general claw-free perfect graph in $O(|V(G)|^{3})$ time.
Palabras clave: Claw-free graphs , line graphs , minimum weighted clique cover , perfect graphs , strip-composed graphs
Ver el registro completo
 
Archivos asociados
Tamaño: 1.407Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/173296
DOI: http://dx.doi.org/10.1002/jgt.22611
URL: https://onlinelibrary.wiley.com/doi/10.1002/jgt.22611
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bonomo, Flavia; Oriolo, Gianpaolo; Snels, Claudia; Minimum weighted clique cover on claw-free perfect graphs; John Wiley & Sons Inc.; Journal of Graph Theory; 96; 1-2021; 231-268
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo On some graph classes related to perfect graphs: A survey
    Bonomo-Braberman, Flavia; Durán, Guillermo; Safe, Martin Dario ; Wagler, Annegret K. (Elsevier Science, 2020-07-15)
  • Artículo On basic chordal graphs and some of its subclasses
    de Caria, Pablo Jesús ; Gutierrez, Marisa (Elsevier Science, 2016-09)
  • Artículo Balancedness of subclasses of circular-arc graphs
    Bonomo, Flavia ; Duran, Guillermo Alfredo ; Safe, Martin Dario ; Wagler, Annegret Katrin (Discrete Mathematics and Theoretical Computer Science, 2014-03)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES