Artículo
Better 3-coloring algorithms: Excluding a triangle and a seven vertex path
Bonomo, Flavia
; Chudnovsky, Mariana
; Goedgebeur, Jan; Maceli, Peter; Schaudt, Oliver; Stein, Maya; Zhong, Mingxian
Fecha de publicación:
01/2021
Editorial:
Elsevier Science
Revista:
Theoretical Computer Science
ISSN:
0304-3975
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present an algorithm to color a graph G with no triangle and no induced 7-vertex path (i.e., a {P7,C3}-free graph), where every vertex is assigned a list of possible colors which is a subset of {1,2,3}. While this is a special case of the problem solved in Bonomo et al. (2018) [1], that does not require the absence of triangles, the algorithm here is both faster and conceptually simpler. The complexity of the algorithm is O(|V(G)|5(|V(G)|+|E(G)|)), and if G is bipartite, it improves to O(|V(G)|2(|V(G)|+|E(G)|)). Moreover, we prove that there are finitely many minimal obstructions to list 3-coloring {Pt,C3}-free graphs if and only if t≤7. This implies the existence of a polynomial time certifying algorithm for list 3-coloring in {P7,C3}-free graphs. We furthermore determine other cases of t,ℓ, and k such that the family of minimal obstructions to list k-coloring in {Pt,Cℓ}-free graphs is finite.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bonomo, Flavia; Chudnovsky, Mariana; Goedgebeur, Jan; Maceli, Peter; Schaudt, Oliver; et al.; Better 3-coloring algorithms: Excluding a triangle and a seven vertex path; Elsevier Science; Theoretical Computer Science; 850; 1-2021; 98-115
Compartir
Altmétricas