Mostrar el registro sencillo del ítem
dc.contributor.author
García Martínez, Beatriz
dc.contributor.author
Fernández Caballero, Antonio
dc.contributor.author
Zunino, Luciano José
dc.contributor.author
Martínez Rodrigo, Arturo
dc.date.available
2022-10-14T13:42:53Z
dc.date.issued
2021-03
dc.identifier.citation
García Martínez, Beatriz; Fernández Caballero, Antonio; Zunino, Luciano José; Martínez Rodrigo, Arturo; Recognition of Emotional States from EEG Signals with Nonlinear Regularity- and Predictability-Based Entropy Metrics; Springer; Cognitive Computation; 13; 2; 3-2021; 403-417
dc.identifier.issn
1866-9964
dc.identifier.uri
http://hdl.handle.net/11336/173203
dc.description.abstract
Recently, the recognition of emotions with electroencephalographic (EEG) signals has received increasing attention. Furthermore, the nonstationarity of brain has intensified the application of nonlinear methods. Nonetheless, metrics like quadratic sample entropy (QSE), amplitude-aware permutation entropy (AAPE) and permutation min-entropy (PME) have never been applied to discern between more than two emotions. Therefore, this study computes for the first time QSE, AAPE and PME for recognition of four groups of emotions. After preprocessing the EEG recordings, the three entropy metrics were computed. Then, a tenfold classification approach based on a sequential forward selection scheme and a support vector machine classifier was implemented. This procedure was applied in a multi-class scheme including the four groups of study simultaneously, and in a binary-class approach for discerning emotions two by two, regarding their levels of arousal and valence. For both schemes, QSE+AAPE and QSE+PME were combined. In both multi-class and binary-class schemes, the best results were obtained in frontal and parietal brain areas. Furthermore, in most of the cases channels from QSE and AAPE/PME were selected in the classification models, thus highlighting the complementarity between those different types of entropy indices and achieving global accuracy results higher than 90% in multi-class and binary-class schemes. The combination of regularity- and predictability-based entropy indices denoted a high degree of complementarity between those nonlinear methods. Finally, the relevance of frontal and parietal areas for recognition of emotions has revealed the essential role of those brain regions in emotional processes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ELECTROENCEPHALOGRAPHY
dc.subject
EMOTIONS
dc.subject
ENTROPY METRICS
dc.subject
NONLINEAR ANALYSIS
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Recognition of Emotional States from EEG Signals with Nonlinear Regularity- and Predictability-Based Entropy Metrics
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T23:35:28Z
dc.journal.volume
13
dc.journal.number
2
dc.journal.pagination
403-417
dc.journal.pais
Suiza
dc.description.fil
Fil: García Martínez, Beatriz. Universidad de Castilla-La Mancha; España
dc.description.fil
Fil: Fernández Caballero, Antonio. Universidad de Castilla-La Mancha; España
dc.description.fil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina
dc.description.fil
Fil: Martínez Rodrigo, Arturo. Universidad de Castilla-La Mancha; España
dc.journal.title
Cognitive Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12559-020-09789-3
Archivos asociados