Artículo
A class of prime fusion categories of dimension 2^N
Fecha de publicación:
02/2021
Editorial:
University of Albany
Revista:
New York Journal of Mathematics
e-ISSN:
1076-9803
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study a class of strictly weakly integral fusion categories I_{N,ζ}, where N≥1 is a natural number and ζ is a 2^Nth root of unity, that we call N-Ising fusion categories. An N-Ising fusion category has Frobenius-Perron dimension 2^{N+1} and is a graded extension of a pointed fusion category of rank 2 by the cyclic group of order Z_{2^N}. We show that every braided N-Ising fusion category is prime and also that there exists a slightly degenerate N-Ising braided fusion category for all N>2. We also prove a structure result for braided extensions of a rank 2 pointed fusion category in terms of braided N-Ising fusion categories.
Palabras clave:
FUSION CATEGORY
,
BRAIDES FUSION CATEGORY
,
GROUP EXTENSION
,
ISING CATEGORY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Jingcheng, Dong; Natale, Sonia Lujan; Hua, Sun; A class of prime fusion categories of dimension 2^N; University of Albany; New York Journal of Mathematics; 27; 2-2021; 141-163
Compartir