Artículo
Weight distribution of cyclic codes defined by quadratic forms and related curves
Fecha de publicación:
06/2021
Editorial:
Unión Matemática Argentina
Revista:
Revista de la Unión Matemática Argentina
ISSN:
0041-6932
e-ISSN:
1669-9637
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider cyclic codes CL associated to quadratic trace forms inm variables (Formula Presented) determined by a family L of q-linearized polynomials R over Fqm, and three related codes CL,0, CL,1, and CL,2. We describe the spectra for all these codes when L is an even rank family, in terms of the distribution of ranks of the forms QR in the family L, and we also computethe complete weight enumerator for CL. In particular, considering the family L = ‹xql›, with l fixed in N, we give the weight distribution of four parametrized families of cyclic codes Cl, Cl,0,Cl,1, and Cl,2 over Fq with zeros(Formula Presented) respectively,where q = ps with p prime, α is a generator of F*qm, and m/(m,l)is even. Finally, we give simple necessary and sufficient conditions for Artin–Schreier curves yp−y = xR(x)+βx, p prime, associated to polynomials R ∈ L to be optimal. We then obtain several maximal and minimal such curves inthe case (Formula Presented).
Palabras clave:
CYCLIC CODES
,
OPTIMAL CURVES
,
QUADRATIC FORMS
,
WEIGHT DISTRIBUTION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Podesta, Ricardo Alberto; Videla Guzman, Denis Eduardo; Weight distribution of cyclic codes defined by quadratic forms and related curves; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 62; 1; 6-2021; 219-242
Compartir
Altmétricas