Mostrar el registro sencillo del ítem
dc.contributor.author
Deré, Jonas
dc.contributor.author
Origlia, Marcos Miguel
dc.date.available
2022-10-12T16:53:34Z
dc.date.issued
2021-09-01
dc.identifier.citation
Deré, Jonas; Origlia, Marcos Miguel; Simply transitive NIL-affine actions of solvable Lie groups; De Gruyter; Forum Mathematicum; 33; 5; 1-9-2021; 1349-1367
dc.identifier.issn
0933-7741
dc.identifier.uri
http://hdl.handle.net/11336/172726
dc.description.abstract
Every simply connected and connected solvable Lie group G admits a simply transitive action on a nilpotent Lie group H via affine transformations. Although the existence is guaranteed, not much is known about which Lie groups G can act simply transitively on which Lie groups H. So far, the focus was mainly on the case where G is also nilpotent, leading to a characterization depending only on the corresponding Lie algebras and related to the notion of post-Lie algebra structures. This paper studies two different aspects of this problem. First, we give a method to check whether a given action : G Aff(H) is simply transitive by looking only at the induced morphism p: G → aff(h) between the corresponding Lie algebras. Secondly, we show how to check whether a given solvable Lie group G acts simply transitively on a given nilpotent Lie group H, again by studying properties of the corresponding Lie algebras. The main tool for both methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull,whichwe also define on the level of Lie algebras. As an application, we give a full description of the possibilities for simply transitive actions up to dimension 4.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ALGEBRAIC HULL
dc.subject
LIE ALGEBRA
dc.subject
SEMISIMPLE SPLITTING
dc.subject
SIMPLY TRANSITIVE ACTION
dc.subject
SOLVABLE LIE GROUP
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Simply transitive NIL-affine actions of solvable Lie groups
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-19T16:06:58Z
dc.identifier.eissn
1435-5337
dc.journal.volume
33
dc.journal.number
5
dc.journal.pagination
1349-1367
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Deré, Jonas. Katholikie Universiteit Leuven; Bélgica
dc.description.fil
Fil: Origlia, Marcos Miguel. Monash University; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.journal.title
Forum Mathematicum
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/forum-2020-0114
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/forum-2020-0114/html
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2004.12774
Archivos asociados