Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Algebras of commuting differential operators for integral kernels of Airy type

Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio NahuelIcon
Fecha de publicación: 12/2021
Editorial: Cornell University
Revista: arXiv
ISSN: 2331-8422
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Differential operators commuting with integral operators were discovered in the work of C. Tracy and H. Widom [37, 38] and used to derive asymptotic expansions of the Fredholm determinants of integral operators arising in random matrix theory. Very recently, it has been proved that all rational, symmetric Darboux transformations of the Bessel, Airy, and exponential bispectral functions give rise to commuting integral and differential operators [6, 7, 8], vastly generalizing the known examples in the literature. In this paper, we give a classification of the the rational symmetric Darboux transformations of the Airy function in terms of the fixed point submanifold of a differential Galois group acting on the Lagrangian locus of the (infinite dimensional) Airy Adelic Grassmannian and initiate the study of the full algebra of differential operators commuting with each of the integral operators in question. We leverage the general theory of [8] to obtain explicit formulas for the two differential operators of lowest orders that commute with each of the level one and two integral operators obtained in the Darboux process. Moreover, we prove that each pair of differential operators commute with each other. The commuting operators in the level one case are shown to satisfy an algebraic relation defining an elliptic curve.
Palabras clave: Mathematical physics , Rings and algebras , Spectral theory
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 259.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/172708
DOI: https://doi.org/10.48550/arXiv.2112.11639
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel; Algebras of commuting differential operators for integral kernels of Airy type; Cornell University; arXiv; 12-2021; 1-19
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES