Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Love thy neighbour: automatic animal behavioural classification of acceleration data using the K-Nearest neighbour algorithm

Bidder, Owen R.; Campbell, Hamish A.; Gómez Laich, Agustina MartaIcon ; Urgé, Patricia; Walker, James; Cai, Yuzhi; Gao, Lianli; Quintana, Flavio RobertoIcon ; Wilson, Rory P.
Fecha de publicación: 21/02/2014
Editorial: Public Library Of Science
Revista: Plos One
ISSN: 1932-6203
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ecología

Resumen

Researchers hoping to elucidate the behaviour of species that aren’t readily observed are able to do so using biotelemetry methods. Accelerometers in particular are proving particularly effective and have been used on terrestrial, aquatic and volant species with success. In the past, behavioural modes were detected in accelerometer data through manual inspection, but with developments in technology, modern accelerometers now record at frequencies that make this impractical. In light of this, some researchers have suggested the use of various machine learning approaches as a means to classify accelerometer data automatically. We feel uptake of this approach by the scientific community is inhibited for two reasons; 1) Most machine learning algorithms require selection of summary statistics which obscure the decision mechanisms by which classifications are arrived, and 2) they are difficult to implement without appreciable computational skill. We present a method which allows researchers to classify accelerometer data into behavioural classes automatically using a primitive machine learning algorithm, k-nearest neighbour (KNN). Raw acceleration data may be used in KNN without selection of summary statistics, and it is easily implemented using the freeware program R. The method is evaluated by detecting 5 behavioural modes in 8 species, with examples of quadrupedal, bipedal and volant species. Accuracy and Precision were found to be comparable with other, more complex methods. In order to assist in the application of this method, the script required to run KNN analysis in R is provided. We envisage that the KNN method may be coupled with methods for investigating animal position, such as GPS telemetry or dead-reckoning, in order to implement an integrated approach to movement ecology research.
Palabras clave: Body Acceleration , Energy-Expenditure , Adeline Penguins , Locomotion , Ecology , Accelerometer , System , Speed
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 324.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/17261
DOI: http://dx.doi.org/10.1371/journal.pone.0088609
URL: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088609
Colecciones
Articulos(CCT-CENPAT)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CENPAT
Citación
Bidder, Owen R.; Campbell, Hamish A.; Gómez Laich, Agustina Marta; Urgé, Patricia; Walker, James; et al.; Love thy neighbour: automatic animal behavioural classification of acceleration data using the K-Nearest neighbour algorithm; Public Library Of Science; Plos One; 9; 2; 21-2-2014; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES