Mostrar el registro sencillo del ítem
dc.contributor.author
Jacquelin, Daniela Karina

dc.contributor.author
Soria, Federico Ariel

dc.contributor.author
Paredes Olivera, Patricia

dc.contributor.author
Patrito, Eduardo Martin

dc.date.available
2022-10-11T18:11:25Z
dc.date.issued
2021-09
dc.identifier.citation
Jacquelin, Daniela Karina; Soria, Federico Ariel; Paredes Olivera, Patricia; Patrito, Eduardo Martin; Reactive Force Field-Based Molecular Dynamics Simulations on the Thermal Stability of Trimesic Acid on Graphene: Implications for the Design of Supramolecular Networks; American Chemical Society; ACS Applied Nano Materials; 4; 9; 9-2021; 9241-9253
dc.identifier.uri
http://hdl.handle.net/11336/172555
dc.description.abstract
In this work, we used the ReaxFF force field to investigate the dynamics of different network structures of trimesic acid (TMA) molecules on graphene as a function of temperature. We considered the so-called honeycomb, filled honeycomb, flower, zigzag, and close-packed TMA motifs. The thermal stability was investigated using molecular dynamics simulations with the constant number of molecules, volume, and temperature and force-biased Monte Carlo calculations up to 650 K. Our simulations provide detailed atomistic insights into the intermolecular and molecule-substrate interactions responsible for the self-assembly or the breakage of the TMA networks at different temperatures. The dynamics of hydrogen bonding were followed by counting the number of hydrogen bonds as well as by analyzing OH radial distribution functions. According to the melting temperatures obtained, the honeycomb structure has a higher stability than the high-coverage zigzag and close-packed structures. Guest TMA molecules within the pores of the honeycomb motif further increase its thermal stability, thus showing the beneficial effect of host-guest interactions. The twisting and rotation of carboxylic groups with increasing temperature are responsible for the breakage of hydrogen bonds, which ultimately leads to the melting of the networks. Partial TMA desorption observed at the onset of network disordering was attributed to the intermolecular vibrational energy transfer between the molecules. For the high-coverage close-packed network and for an island of TMA molecules with a close-packed structure, we observed a phase transition to the honeycomb structure as a consequence of the stronger dimeric −COOH bonding of the latter. The energetics of the formation of the different networks from TMA molecules in the gas phase was also investigated. Intermolecular interactions and TMA-graphene interactions have similar magnitudes. The stability of the different networks cannot be fully understood only based on energetic considerations, and in the case of the dense close-packed structure, MD simulations show how it is rapidly destabilized.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
GRAPHENE
dc.subject
HOST−GUEST INTERACTIONS
dc.subject
MOLECULAR DYNAMICS
dc.subject
SUPRAMOLECULAR CHEMISTRY
dc.subject
THERMAL STABILITY
dc.subject
TMA POLYMORPHS
dc.subject
TRIMESIC ACID
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Reactive Force Field-Based Molecular Dynamics Simulations on the Thermal Stability of Trimesic Acid on Graphene: Implications for the Design of Supramolecular Networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T23:27:01Z
dc.identifier.eissn
2574-0970
dc.journal.volume
4
dc.journal.number
9
dc.journal.pagination
9241-9253
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Washington
dc.description.fil
Fil: Jacquelin, Daniela Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina
dc.description.fil
Fil: Soria, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina
dc.description.fil
Fil: Paredes Olivera, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina
dc.description.fil
Fil: Patrito, Eduardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina
dc.journal.title
ACS Applied Nano Materials
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsanm.1c01759
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsanm.1c01759
Archivos asociados