Mostrar el registro sencillo del ítem

dc.contributor.author
Mercadal, Pablo Agustin  
dc.contributor.author
Pérez, Luis Alberto  
dc.contributor.author
Coronado, Eduardo A.  
dc.date.available
2022-10-11T16:24:03Z  
dc.date.issued
2021-07  
dc.identifier.citation
Mercadal, Pablo Agustin; Pérez, Luis Alberto; Coronado, Eduardo A.; Optical Properties of Silica-Coated Au Nanorods: Correlating Theory and Experiments for Determining the Shell Porosity; American Chemical Society; Journal of Physical Chemistry C; 125; 28; 7-2021; 15516-15526  
dc.identifier.issn
1932-7447  
dc.identifier.uri
http://hdl.handle.net/11336/172520  
dc.description.abstract
Gold nanorods (GNRs) coated with mesoporous silica (GNRs@m-SiO2) have proven to be a robust nanostructure with useful applications in biomedical, catalysis, and molecular sensing areas, among others. The m-SiO2 shell improves the nanoparticle stability and grants a concomitant molecular loading capability. One of the factors that determine the specific application of GNRs@m-SiO2 is the porosity degree of the m-SiO2 shell. In the present work, we first studied how the extinction spectra features of GNRs@m-SiO2 in combination with electrodynamics modeling can be used to determine the porosity degree of the m-SiO2 shell produced at two different concentrations of the porogenic surfactant cethyl trimethylammonium bromide (CTAB). The changes on the intensity in the low-frequency region are explained qualitatively in terms of the optical properties of the mesoporous silica spheres formed as byproducts. Varying the CTAB concentration produces a change not only on the porosity but also on the thickness of the m-SiO2 shell. With rigorous discrete dipole approximation (DDA) simulations, together with an effective medium approach (Maxwell-Garnet) for the m-SiO2, it is demonstrated that the peak position of the longitudinal localized surface plasmon resonance (LSPR) plasmon mode depends only on the effective dielectric constant of the m-SiO2 shell (assuming that all the pores are filled by water). The volume fraction of water in the m-SiO2 shell that, in the DDA simulations, fits the peak position of the longitudinal LSPR of the experimental extinction spectra is a measure of the m-SiO2 shell porosity. DDA simulations show that GNRs@m-SiO2 fabricated with the highest CTAB concentration depicts a degree porosity high enough to allow the diffusion of an analyte toward the GNR core. This feature was tested by determining the analytical surface-enhanced Raman spectroscopy (SERS) enhancement factor of Rhodamine 6G as a molecular probe and comparing it with a theoretical SERS enhancement factor in different regions around the GNRs@m-SiO2 structure. Second, we introduce a simple approach, denoted as quasi-static effective medium approach (QSEMA) for determining the resonance condition of the longitudinal LSPR for core-shell prolate spheroids and therefore the shell porosity. This simple approach leads to the same results as those of rigorous DDA simulations using the exact model geometry. Finally, using QSEMA, we determined the uptake through the pores of each component in glycerin-water solvent mixtures of different compositions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GOLD NANORODS  
dc.subject
COATING SILICA  
dc.subject
OPTICAL PROPERTIES  
dc.subject
POROSITY DEGREE  
dc.subject.classification
Química Coloidal  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Optical Properties of Silica-Coated Au Nanorods: Correlating Theory and Experiments for Determining the Shell Porosity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-06T19:40:40Z  
dc.identifier.eissn
1932-7455  
dc.journal.volume
125  
dc.journal.number
28  
dc.journal.pagination
15516-15526  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Mercadal, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina  
dc.description.fil
Fil: Pérez, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina  
dc.description.fil
Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina  
dc.journal.title
Journal of Physical Chemistry C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.1c02647  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.1c02647