Mostrar el registro sencillo del ítem

dc.contributor.author
Benadi, Gita  
dc.contributor.author
Dormann, Carsten  
dc.contributor.author
Fründ, Jochen  
dc.contributor.author
Stephan, Ruth  
dc.contributor.author
Vazquez, Diego P.  
dc.date.available
2022-10-06T15:50:05Z  
dc.date.issued
2021-03  
dc.identifier.citation
Benadi, Gita; Dormann, Carsten; Fründ, Jochen; Stephan, Ruth; Vazquez, Diego P.; Quantitative prediction of interactions in bipartite networks based on traits, abundances, and phylogeny; University of Chicago Press; American Naturalist; 199; 6; 3-2021; 841–854  
dc.identifier.issn
0003-0147  
dc.identifier.uri
http://hdl.handle.net/11336/172267  
dc.description.abstract
Ecological interactions link species in networks. Loss of species from or introduction of new species into an existing network may have substantial effects for interaction patterns. Predicting changes in interaction frequency while allowing for rewiring of existing interactions—and hence estimating the consequences of community compositional changes—is thus a central challenge for network ecology. Interactions between species groups, such as pollinators and flowers or parasitoids and hosts, are moderated by matching morphological traits or sensory clues, most of which are unknown to us. If these traits are phylogenetically conserved, however, we can use phylogenetic distances to construct latent, surrogate traits and try to match those across groups, in addition to observed traits. Understanding how important traits and trait matching are, relative to abundances and chance, is crucial to estimating the fundamental predictability of network interactions. Here, we present a statistically sound approach (“tapnet”) to fitting abundances, traits, and phylogeny to observed network data to predict interaction frequencies. We thereby expand existing approaches to quantitative bipartite networks, which so far have failed to correctly represent the nonindepen-dence of network interactions. Furthermore, we use simulations and cross validation on independent data to evaluate the predictive power of the fit. Our results show that tapnet is on a par with abundance-only, matching centrality, and machine learning approaches. This approach also allows us to evaluate how well current concepts of trait matching work. On the basis of our results, we expect that interactions in well-sampled networks can be well predicted if traits and abundances are the main driver of interaction frequency.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
University of Chicago Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COMMUNITY  
dc.subject
MORPHOLOGICAL TRAIT  
dc.subject
MUTUALIST NETWORK  
dc.subject
PHYLOGENY  
dc.subject
POLLINATION  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Quantitative prediction of interactions in bipartite networks based on traits, abundances, and phylogeny  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-05T14:06:09Z  
dc.journal.volume
199  
dc.journal.number
6  
dc.journal.pagination
841–854  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Chicago  
dc.description.fil
Fil: Benadi, Gita. Albert Ludwigs University of Freiburg; Alemania  
dc.description.fil
Fil: Dormann, Carsten. Albert Ludwigs University of Freiburg; Alemania  
dc.description.fil
Fil: Fründ, Jochen. Albert Ludwigs University of Freiburg; Alemania  
dc.description.fil
Fil: Stephan, Ruth. Albert Ludwigs University of Freiburg; Alemania  
dc.description.fil
Fil: Vazquez, Diego P.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina. Albert Ludwigs University of Freiburg; Alemania  
dc.journal.title
American Naturalist  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.journals.uchicago.edu/doi/10.1086/714420  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1086/714420