Artículo
Robust nonlinear principal components
Fecha de publicación:
03/2015
Editorial:
Springer
Revista:
Statistics And Computing
ISSN:
0960-3174
e-ISSN:
1573-1375
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
All known approaches to nonlinear principal components are based on minimizing a quadratic loss, which makes them sensitive to data contamination. A predictive approach in which a spline curve is fit minimizing a residual M-scale is proposed for this problem. For a p-dimensional random sample xi (i=1,…,n) the method finds a function h:R→Rp and a set {t1,…,tn}⊂R that minimize a joint M-scale of the residuals xi−h(ti), where h ranges on the family of splines with a given number of knots. The computation of the curve then becomes the iterative computing of regression S-estimators. The starting values are obtained from a robust linear principal components estimator. A simulation study and the analysis of a real data set indicate that the proposed approach is almost as good as other proposals for row-wise contamination, and is better for element-wise contamination.
Palabras clave:
PRINCIPAL CURVES
,
S-ESTIMATORS
,
SPLINES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Maronna, Ricardo Antonio; Méndez, Fernanda; Yohai, Victor Jaime; Robust nonlinear principal components; Springer; Statistics And Computing; 25; 2; 3-2015; 439-448
Compartir
Altmétricas