Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Highly Robust and Highly Finite Sample Efficient Estimators for the Linear Model

Título del libro: Modern Nonparametric, Robust and Multivariate Methods

Smucler, EzequielIcon ; Yohai, Victor JaimeIcon
Otros responsables: Nordhausen, Klaus; Taskinen, Sara
Fecha de publicación: 2015
Editorial: Springer
ISBN: 978-3-319-22403-9
Idioma: Inglés
Clasificación temática:
Estadística y Probabilidad

Resumen

In this paper, we propose a new family of robust regression estimators, which we call bounded residual scale estimators (BRS-estimators) which are simultaneously highly robust and highly efficient for small samples with normally distributed errors. To define these estimators it is required to have a robust M-scale and a family of robust MM-estimators. We start by choosing in this family a highly robust initial estimator but not necessarily highly efficient. Loosely speaking, the BRS-estimator is defined as the estimator in the MM family which is closest to the LSE among those with a robust M-scale sufficiently close to the one of the initial estimators. The efficiency of the BRS is derived from the fact that when there are not outliers in the sample and the errors are normally distributed, the scale of the LSE is similar to the one of the initial estimator. The robustness of the BRS-estimator comes from the fact that its robust scale is close to the one of the initial highly robust estimator. The results of a Monte Carlo study show that the proposed estimator has a high finite-sample efficiency, and is highly resistant to outlier contamination.
Palabras clave: Brakdown point , Finite sample efficiency , MM-estimators
Ver el registro completo
 
Archivos asociados
Tamaño: 275.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/171612
URL: https://link.springer.com/chapter/10.1007/978-3-319-22404-6_6
DOI: http://dx.doi.org/ 10.1007/978-3-319-22404-6_6
Colecciones
Capítulos de libros (IC)
Capítulos de libros de INSTITUTO DE CALCULO
Citación
Smucler, Ezequiel; Yohai, Victor Jaime; Highly Robust and Highly Finite Sample Efficient Estimators for the Linear Model; Springer; 2015; 91-108
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES