Mostrar el registro sencillo del ítem

dc.contributor.author
Agostinelli, Claudio  
dc.contributor.author
Valdora, Marina Silvia  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2022-10-04T10:39:28Z  
dc.date.issued
2019-06  
dc.identifier.citation
Agostinelli, Claudio; Valdora, Marina Silvia; Yohai, Victor Jaime; Initial robust estimation in generalized linear models; Elsevier Science; Computational Statistics and Data Analysis; 134; 6-2019; 144-156  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/171605  
dc.description.abstract
Generalized Linear Models are routinely used in data analysis. Classical estimators are based on the maximum likelihood principle and it is well known that the presence of outliers can have a large impact on them. Several robust procedures have been presented in the literature, being redescending M-estimators the most widely accepted. Based on non-convex loss functions, these estimators need a robust initial estimate, which is often obtained by subsampling techniques. However, as the number of unknown parameters increases, the number of subsamples needed in order for this method to be robust, soon makes it infeasible. Furthermore the subsampling procedure provides a non deterministic starting point. A new method for computing a robust initial estimator is proposed. This method is deterministic and demands a relatively short computational time, even for large numbers of covariates. The proposed method is applied to M-estimators based on transformations. In addition, an iteratively reweighted least squares algorithm is proposed for the computation of the final estimates. The new methods are studied by means of Monte Carlo experiments.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INITIAL ESTIMATES  
dc.subject
LEAST SQUARES ESTIMATORS  
dc.subject
M-ESTIMATORS  
dc.subject
OUTLIERS  
dc.subject
POISSON REGRESSION  
dc.subject
VARIANCE STABILIZING TRANSFORMATIONS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Initial robust estimation in generalized linear models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-30T20:18:20Z  
dc.journal.volume
134  
dc.journal.pagination
144-156  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Agostinelli, Claudio. Universita degli Studi di Trento; Italia  
dc.description.fil
Fil: Valdora, Marina Silvia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.journal.title
Computational Statistics and Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947318302895  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.csda.2018.12.010