Mostrar el registro sencillo del ítem
dc.contributor.author
Alberti, Sebastián
dc.contributor.author
Piccinini, Esteban
dc.contributor.author
Ramírez, Pedro Germán
dc.contributor.author
Longo, Gabriel Sebastian
dc.contributor.author
Ceolin, Marcelo Raul
dc.contributor.author
Azzaroni, Omar
dc.date.available
2022-10-04T02:33:45Z
dc.date.issued
2021-12
dc.identifier.citation
Alberti, Sebastián; Piccinini, Esteban; Ramírez, Pedro Germán; Longo, Gabriel Sebastian; Ceolin, Marcelo Raul; et al.; Mesoporous thin films on graphene FETs: Nanofiltered, amplified and extended field-effect sensing; Royal Society of Chemistry; Nanoscale; 13; 45; 12-2021; 19098-19108
dc.identifier.issn
2040-3372
dc.identifier.uri
http://hdl.handle.net/11336/171580
dc.description.abstract
The ionic screening and the response of non-specific molecules are great challenges of biosensors based on field-effect transistors (FETs). In this work, we report the construction of graphene based transistors modified with mesoporous silica thin films (MTF-GFETs) and the unique (bio)sensing properties that arise from their synergy. The developed method allows the preparation of mesoporous thin films free of fissures, with an easily tunable thickness, and prepared on graphene-surfaces, preserving their electronic properties. The MTF-GFETs show good sensing capacity to small probes that diffuse inside the mesopores and reach the graphene semiconductor channel such as H+, OH-, dopamine and H2O2. Interestingly, MTF-GFETs display a greater electrostatic gating response in terms of amplitude and sensing range compared to bare-GFETs for charged macromolecules that infiltrate the pores. For example, for polyelectrolytes and proteins of low MW, the amplitude increases almost 100% and the sensing range extends more than one order of magnitude. Moreover, these devices show a size-excluded electrostatic gating response given by the pore size. These features are even displayed at physiological ionic strength. Finally, a developed thermodynamic model evidences that the amplification and extended field-effect properties arise from the decrease of free ions inside the MTFs due to the entropy loss of confining ions in the mesopores. Our results demonstrate that the synergistic coupling of mesoporous films with FETs leads to nanofiltered, amplified and extended field-effect sensing (NAExFES).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Royal Society of Chemistry
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MESOPOROUS FILMS
dc.subject
GRAPHENE
dc.subject
TRANSISTOR
dc.subject
SENSING
dc.subject.classification
Nano-materiales
dc.subject.classification
Nanotecnología
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Mesoporous thin films on graphene FETs: Nanofiltered, amplified and extended field-effect sensing
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-06T19:10:11Z
dc.journal.volume
13
dc.journal.number
45
dc.journal.pagination
19098-19108
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Piccinini, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Ramírez, Pedro Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.description.fil
Fil: Longo, Gabriel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.journal.title
Nanoscale
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/d1nr03704h
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2021/NR/D1NR03704H
Archivos asociados