Mostrar el registro sencillo del ítem

dc.contributor.author
Guida Johnson, Bárbara  
dc.contributor.author
Villagra, Pablo Eugenio  
dc.contributor.author
Alvarez Guerrero, Leandro Manuel  
dc.contributor.author
Rojas, Juan Facundo  
dc.contributor.author
Alvarez, Juan Agustin  
dc.date.available
2022-09-30T19:30:03Z  
dc.date.issued
2021-04  
dc.identifier.citation
Guida Johnson, Bárbara; Villagra, Pablo Eugenio; Alvarez Guerrero, Leandro Manuel; Rojas, Juan Facundo; Alvarez, Juan Agustin; Finding woodlands in drylands: Bases for the monitoring of xeric open forests in a cloud computing platform; Elsevier; Remote Sensing Applications: Society and Environment; 22; 4-2021; 1-14  
dc.identifier.issn
2352-9385  
dc.identifier.uri
http://hdl.handle.net/11336/171345  
dc.description.abstract
Conservation and sustainable management of woodlands in drylands is a priority at the global level considering the numerous benefits and ecosystem services they offer for local people. Sustainable use of forest resources requires the planning of forest conservation, restoration, and use on a global scale through National Forest Plans. It is imperative to generate information about their location and main characteristics to develop such plans. In this context, satellite imagery presents invaluable advantages related to the possibility of covering greater extensions in less time using fewer resources. However, there is limited knowledge about dryland woodlands spatial distribution due to the challenges associated with their identification. Particular features of these forests may conceal them from remote sensors. In Argentina's drylands, the detection of Monte biogeographical province's woodlands is hindered due to the spectral confusion that takes place between them and the surrounding shrubland. The objective of this study was to assess and compare different methodologies in a web-based image processing platform to develop a monitoring methodology easy to apply by public offices. We selected two study areas in the Monte region where we performed and assessed 16 types of supervised image classifications. In drier sites characterized by high contrast between woodlands and surrounding areas, forest detectability improved. In both study areas, we found better results using higher resolution images. The improvement associated with the inclusion of a vegetation index, as well as the classification algorithm and scheme implemented was case-dependent. In both study areas, classifications detected non-forest areas more accurately, indicating the possible application of the assessed procedures for the monitoring of forest loss. The cloud computing platform proved very useful and included multiple advantages. Bases for the detection of woodlands in drylands emerge from this study, considering improvements in accuracy and suitable alternatives: the use of Sentinel images, the addition to the mosaic of the SATVI index, the use of the CART algorithm, and a detailed classification scheme. These do not intend to be rigid instructions, but baseline recommendations to orient the design of monitoring approaches of these hidden forests.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CART  
dc.subject
FOREST DETECTABILITY  
dc.subject
GOOGLE EARTH ENGINE  
dc.subject
MONTE BIOGEOGRAPHICAL PROVINCE  
dc.subject
PROSOPIS WOODLANDS  
dc.subject
SATVI INDEX  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Finding woodlands in drylands: Bases for the monitoring of xeric open forests in a cloud computing platform  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-19T12:43:45Z  
dc.journal.volume
22  
dc.journal.pagination
1-14  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Guida Johnson, Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina  
dc.description.fil
Fil: Villagra, Pablo Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina  
dc.description.fil
Fil: Alvarez Guerrero, Leandro Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina  
dc.description.fil
Fil: Rojas, Juan Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina  
dc.description.fil
Fil: Alvarez, Juan Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina  
dc.journal.title
Remote Sensing Applications: Society and Environment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352938521000641  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.rsase.2021.100528