Mostrar el registro sencillo del ítem

dc.contributor.author
Yang, Yating  
dc.contributor.author
Zhang, Zhaosheng  
dc.contributor.author
Fang, Wei Hai  
dc.contributor.author
Fernández Alberti, Sebastián  
dc.contributor.author
Long, Run  
dc.date.available
2022-09-29T17:33:33Z  
dc.date.issued
2020-12  
dc.identifier.citation
Yang, Yating; Zhang, Zhaosheng; Fang, Wei Hai; Fernández Alberti, Sebastián; Long, Run; Unraveling the quantum dynamics origin of high photocatalytic activity in nitrogen-doped anatase TiO2: time-domain ab initio analysis; Royal Society of Chemistry; Journal of Materials Chemistry A; 8; 47; 12-2020; 25235-25244  
dc.identifier.issn
2050-7488  
dc.identifier.uri
http://hdl.handle.net/11336/171101  
dc.description.abstract
A wide bandgap and short-lived charge carrier constitutes two major issues for restricting anatase titanium dioxide (TiO2) photocatalytic activity in the ultraviolet light region of the solar spectrum. Interestingly, experiments reported that anatase TiO2 doping with substitutional N can achieve a high visible-light photocatalytic activity but the mechanism remains controversial and unclear yet. N substituting oxygen creates a mid-gap state, which typically acts as a nonradiative charge recombination center. Using the nonadiabatic (NA) molecular dynamics, we demonstrate that charge carrier lifetimes of N-doped anatase TiO2 are notably prolonged regardless of the oxidation states of the N dopant, but it operates by different mechanisms. The neutral and negatively charged N dopant reduces the bandgap by creating either an electron or a hole trap state prior to recombination with free holes and free electrons, respectively. While the direct recombination of free electrons and free holes, bypassing the electron trap state, dominates the nonradiative relaxation in the neutral N-doped TiO2 and extends the charge carrier lifetimes over 4-fold compared to the pristine anatase TiO2; the hole-trap-assisted electron–hole recombination beats the direction pathway in the negatively charged N-doped TiO2 system, delaying the nonradiative charge recombination over (22 times slower) the pristine system. Our simulations point out to changes in the relative values of NA coupling, decoherence times and energy gaps as determinants of the aforementioned changes in the carrier lifetimes. In this way, our study rationalizes the long-term debate on the enhanced visible-light photocatalytic activity of the TiO2 doping with N and, therefore, it contributes to rational defect engineering for design of high performance of photocatalytic and optoelectronic devices based on TiO2 and other metal oxides.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
QUANTUM DYNAMICS  
dc.subject
CHARGE CARRIERS  
dc.subject
TIO2  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unraveling the quantum dynamics origin of high photocatalytic activity in nitrogen-doped anatase TiO2: time-domain ab initio analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-22T15:01:31Z  
dc.identifier.eissn
2050-7496  
dc.journal.volume
8  
dc.journal.number
47  
dc.journal.pagination
25235-25244  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Yang, Yating. Beijing Normal University; China  
dc.description.fil
Fil: Zhang, Zhaosheng. Beijing Normal University; China. Hebei University; China  
dc.description.fil
Fil: Fang, Wei Hai. Beijing Normal University; China  
dc.description.fil
Fil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina  
dc.description.fil
Fil: Long, Run. Beijing Normal University; China  
dc.journal.title
Journal of Materials Chemistry A  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2020/TA/D0TA08712B  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/d0ta08712b