Artículo
Maximum principles, Liouville theorem and symmetry results for the fractional g-Laplacian
Fecha de publicación:
11/2021
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Journal Of Nonlinear Analysis
ISSN:
0362-546X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study different maximum principles for non-local non-linear operators with non-standard growth that arise naturally in the context of fractional Orlicz–Sobolev spaces and whose most notable representative is the fractional g-Laplacian: [Formula presented] being g the derivative of a Young function. We further derive qualitative properties of solutions such as a Liouville type theorem and symmetry results and present several possible extensions and some interesting open questions. These are the first results of this type proved in this setting.
Palabras clave:
FRACTIONAL G-LAPLACIAN
,
MAXIMUM PRINCIPLES
,
QUALITATIVE PROPERTIES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Molina, Sandra; Salort, Ariel Martin; Vivas, Hernán Agustín; Maximum principles, Liouville theorem and symmetry results for the fractional g-Laplacian; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 212; 11-2021; 1-24
Compartir
Altmétricas