Mostrar el registro sencillo del ítem

dc.contributor.author
Maffi, Juan Martín  
dc.contributor.author
Estenoz, Diana Alejandra  
dc.date.available
2022-09-28T19:10:03Z  
dc.date.issued
2020-09  
dc.identifier.citation
Maffi, Juan Martín; Estenoz, Diana Alejandra; Predicting phase inversion in agitated dispersions with machine learning algorithms; Taylor & Francis; Chemical Engineering Communications; 208; 12; 9-2020; 1757-1774  
dc.identifier.issn
0098-6445  
dc.identifier.uri
http://hdl.handle.net/11336/170817  
dc.description.abstract
In agitated systems, the phase inversion (PI) phenomenon–the mechanism by which a dispersed phase becomes the continuous one–has been studied extensively in an empirical manner, and few models have been put forward through the years. The underlying physics are still to be fully understood. In this work, the experimental evidence published in literature is used to train machine learning models that may infer the inherent rules that lead to a given dispersion type (O/W or W/O), as well as predict the value of the dispersed phase volume fraction at the edge of the inversion point. Decision trees, bagged decision trees, support-vector machines, and multiple perceptrons are implemented and compared. Results show that it is possible to infer an ensemble of physical rules that explain why a given dispersion is O/W or W/O, where a strong “turbulence constraint” is identified. The intuitive rule that PI occurs at 50% dispersed phase almost never holds. Moreover, neural networks have shown a better performance at predicting the PI point than the other algorithms tested. Finally, a theoretical study is performed in an effort to produce a phase inversion map with the relevant operating variables. This study showed a strong nonlinear effect of the impeller-to-vessel size ratio and an asymmetrical behavior of the interfacial tension on the phase inversion points.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LIQUID–LIQUID DISPERSIONS  
dc.subject
MACHINE LEARNING  
dc.subject
NEURAL NETWORK  
dc.subject
PHASE BEHAVIOR  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Predicting phase inversion in agitated dispersions with machine learning algorithms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-26T17:51:09Z  
dc.identifier.eissn
1563-5201  
dc.journal.volume
208  
dc.journal.number
12  
dc.journal.pagination
1757-1774  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Maffi, Juan Martín. Instituto Tecnológico de Buenos Aires. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Estenoz, Diana Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Chemical Engineering Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1815715  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00986445.2020.1815715