Artículo
Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
Fecha de publicación:
12/2006
Editorial:
American Institute of Physics
Revista:
Journal of Chemical Physics
ISSN:
0021-9606
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a submonolayer lattice-gas of interacting monomers adsorbed on one-dimensional channels arranged in a triangular cross-sectional structure. Two kinds of lateral interaction energies have been considered: (1) wL, interaction energy between nearest-neighbor particles adsorbed along a single channel and (2) wT, interaction energy between particles adsorbed across nearest-neighbor channels. We focus on the case of repulsive transverse interactions (wT >0), where a rich variety of structural orderings are observed in the adlayer, depending on the value of the parameters kB T wT (being kB the Boltzmann constant) and wL wT. For wL wT =0, successive planes are uncorrelated, the system is equivalent to the triangular lattice, and the well-known (3×3) [(3×3)*] ordered phase is found at low temperatures and a coverage, θ, of 13 [23]. In the more general case (wL wT 0), a competition between interactions along a single channel and a transverse coupling between sites in neighboring channels leads to a three-dimensional adsorbed layer. Consequently, the (3×3) and (3×3)* structures "propagate" along the channels and new ordered phases appear in the adlayer. Each ordered phase is separated from the disordered state by a continuous order-disorder phase transition occurring at a critical temperature, Tc, which presents an interesting dependence with wL wT. The Monte Carlo technique was combined with the recently reported free energy minimization criterion approach (FEMCA) [F. Romá, Phys. Rev. B 68, 205407 (2003)] to predict the critical temperatures of the order-disorder transformation. The excellent qualitative agreement between simulated data and FEMCA results allows us to interpret the physical meaning of the mechanisms underlying the observed transitions.
Palabras clave:
LATTICE GAS MODELS
,
PHASE TRANSITIONS
,
MONTE CARLO SIMULATIONS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos(INFAP)
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Citación
Pasinetti, Pedro Marcelo; Romá, Federico José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations; American Institute of Physics; Journal of Chemical Physics; 125; 21; 12-2006; 1-9
Compartir
Altmétricas