Mostrar el registro sencillo del ítem

dc.contributor.author
Dingle Robertson, Laura  
dc.contributor.author
Davidson, Andrew  
dc.contributor.author
McNairn, Heather  
dc.contributor.author
Hosseini, Mehdi  
dc.contributor.author
Mitchell, Scott  
dc.contributor.author
de Abelleyra, Diego  
dc.contributor.author
Verón, Santiago Ramón  
dc.contributor.author
Cosh, Michael H.  
dc.date.available
2022-09-27T12:19:51Z  
dc.date.issued
2020-09  
dc.identifier.citation
Dingle Robertson, Laura; Davidson, Andrew; McNairn, Heather; Hosseini, Mehdi; Mitchell, Scott; et al.; Synthetic Aperture Radar (SAR) image processing for operational space-based agriculture mapping; Taylor & Francis Ltd; International Journal of Remote Sensing; 41; 18; 9-2020; 7112-7144  
dc.identifier.issn
0143-1161  
dc.identifier.uri
http://hdl.handle.net/11336/170568  
dc.description.abstract
Few countries are using space-based Synthetic Aperture Radar (SAR) to operationally produce national-scale maps of their agricultural landscapes. For the past ten years, Canada has integrated C-band SAR with optical satellite data to map what crops are grown in every field, for the entire country. While the advantages of SAR are well understood, the barriers to its operational use include the lack of familiarity with SAR data by agricultural end-user agencies and the lack of a ‘blueprint’ on how to implement an operational SAR-based mapping system. This research reviewed order of operations for SAR data processing and how order choice affects processing time and classification outcomes. Additionally this research assessed the impact of speckle filtering by testing three filter types (adaptive, multi-temporal and multi-resolution) at varying window sizes for three study sites with different average field sizes. The Touzi multi-resolution filter achieved the highest overall classification accuracies for all three sites with varying window sizes, and with only a small (< 2%) difference in accuracy relative to the Gamma Maximum A Posteriori (MAP) adaptive filter which had similar window sizes across sites. As such, the assessment of order of operations for noise reduction and terrain correction was completed using the Gamma MAP adaptive filter. This research found there was no difference in classification accuracies regardless of whether noise reduction was applied before or after terrain correction. However, implementing the terrain correction as the first operation resulted in a 10 to 50% increase in processing time. This is an important consideration when designing and delivering operational systems, especially for large geographies like Canada where hundreds of SAR images are required. These findings will encourage country-wide, regional and global food monitoring initiatives to consider SAR sensors as an important source of data to operationally map agricultural production.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
RADAR  
dc.subject
LAND USE  
dc.subject
LAND COVER  
dc.subject
AGRICULTURE  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Synthetic Aperture Radar (SAR) image processing for operational space-based agriculture mapping  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-26T17:47:19Z  
dc.journal.volume
41  
dc.journal.number
18  
dc.journal.pagination
7112-7144  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Dingle Robertson, Laura. No especifíca;  
dc.description.fil
Fil: Davidson, Andrew. No especifíca;  
dc.description.fil
Fil: McNairn, Heather. Carleton University; Canadá  
dc.description.fil
Fil: Hosseini, Mehdi. Carleton University; Canadá  
dc.description.fil
Fil: Mitchell, Scott. Carleton University; Canadá  
dc.description.fil
Fil: de Abelleyra, Diego. Carleton University; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Verón, Santiago Ramón. Carleton University; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Cosh, Michael H.. No especifíca;  
dc.journal.title
International Journal of Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01431161.2020.1754494?journalCode=tres20  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01431161.2020.1754494