Mostrar el registro sencillo del ítem

dc.contributor.author
Planton, Samuel  
dc.contributor.author
van Kerkoerle, Timo  
dc.contributor.author
Abbih, Leïla  
dc.contributor.author
Maheu, Maxime  
dc.contributor.author
Meyniel, Florent  
dc.contributor.author
Sigman, Mariano  
dc.contributor.author
Wang, Liping  
dc.contributor.author
Figueira, Santiago  
dc.contributor.author
Romano, Sergio Gaston  
dc.contributor.author
Dehaene, Stanislas  
dc.date.available
2022-09-26T17:34:26Z  
dc.date.issued
2021-01  
dc.identifier.citation
Planton, Samuel; van Kerkoerle, Timo; Abbih, Leïla; Maheu, Maxime; Meyniel, Florent; et al.; A theory of memory for binary sequences: Evidence for a mental compression algorithm in humans; Public Library of Science; Plos Computational Biology; 17; 1; 1-2021; 1-43  
dc.identifier.issn
1553-734X  
dc.identifier.uri
http://hdl.handle.net/11336/170469  
dc.description.abstract
Working memory capacity can be improved by recoding the memorized information in a condensed form. Here, we tested the theory that human adults encode binary sequences of stimuli in memory using an abstract internal language and a recursive compression algorithm. The theory predicts that the psychological complexity of a given sequence should be proportional to the length of its shortest description in the proposed language, which can capture any nested pattern of repetitions and alternations using a limited number of instructions. Five experiments examine the capacity of the theory to predict human adults’ memory for a variety of auditory and visual sequences. We probed memory using a sequence violation paradigm in which participants attempted to detect occasional violations in an otherwise fixed sequence. Both subjective complexity ratings and objective violation detection performance were well predicted by our theoretical measure of complexity, which simply reflects a weighted sum of the number of elementary instructions and digits in the shortest formula that captures the sequence in our language. While a simpler transition probability model, when tested as a single predictor in the statistical analyses, accounted for significant variance in the data, the goodness-of-fit with the data significantly improved when the language-based complexity measure was included in the statistical model, while the variance explained by the transition probability model largely decreased. Model comparison also showed that shortest description length in a recursive language provides a better fit than six alternative previously proposed models of sequence encoding. The data support the hypothesis that, beyond the extraction of statistical knowledge, human sequence coding relies on an internal compression using language-like nested structures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Secuencias binarias  
dc.subject
Teoría de la memoria  
dc.subject
Lenguaje del pensamiento  
dc.subject
Complejidad de Kolmogorov  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A theory of memory for binary sequences: Evidence for a mental compression algorithm in humans  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-07T20:52:10Z  
dc.journal.volume
17  
dc.journal.number
1  
dc.journal.pagination
1-43  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Planton, Samuel. Inserm; Francia  
dc.description.fil
Fil: van Kerkoerle, Timo. Inserm; Francia  
dc.description.fil
Fil: Abbih, Leïla. Inserm; Francia  
dc.description.fil
Fil: Maheu, Maxime. Inserm; Francia  
dc.description.fil
Fil: Meyniel, Florent. Inserm; Francia  
dc.description.fil
Fil: Sigman, Mariano. Universidad Torcuato Di Tella; Argentina. Universidad Nebrija; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Wang, Liping. Collège de France; Francia  
dc.description.fil
Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Romano, Sergio Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Dehaene, Stanislas. Chinese Academy of Sciences; República de China. Inserm; Francia  
dc.journal.title
Plos Computational Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008598&rev=2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pcbi.1008598