Mostrar el registro sencillo del ítem

dc.contributor.author
Montes, Enrique  
dc.contributor.author
Lefcheck, Jonathan  
dc.contributor.author
Bigatti, Gregorio  
dc.contributor.author
Guerra-Castro, Edlin  
dc.contributor.author
Klein, Eduardo  
dc.contributor.author
Kavanaugh, Maria T.  
dc.contributor.author
de Azevedo Mazzuco, Ana Carolina  
dc.contributor.author
Cordeiro, Cesar A.M.M.  
dc.contributor.author
Simoes, Nuno  
dc.contributor.author
Macaya, Erasmo C.  
dc.contributor.author
Moity, Nicolas  
dc.contributor.author
Londoño-Cruz, Edgardo  
dc.contributor.author
Helmuth, Brian  
dc.contributor.author
Choi, Francis  
dc.contributor.author
Soto, Eulogio H.  
dc.contributor.author
Miloslavich, Patricia  
dc.contributor.author
Muller-Karger, Frank E.  
dc.date.available
2022-09-23T17:59:52Z  
dc.date.issued
2021-11  
dc.identifier.citation
Montes, Enrique; Lefcheck, Jonathan; Bigatti, Gregorio; Guerra-Castro, Edlin; Klein, Eduardo; et al.; Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design; Oceanography Society; Oceanography; 34; 2; 11-2021; 80-91  
dc.identifier.issn
1042-8275  
dc.identifier.uri
http://hdl.handle.net/11336/170274  
dc.description.abstract
Acquiring marine biodiversity data is difficult, costly, and time consuming, making it challenging to understand the distribution and abundance of lifei n the ocean. Historically, approaches to biodiversity sampling over large geographic scales have advocated for equivalent effort across multiple sites to minimize comparative bias. When effort cannot be equalized, techniques such as rarefaction have been applied to minimize biases by reverting diversity estimates to equivalent numbers of samples or individuals. This often results in oversampling and wasted resources or inaccurately characterized communities due to undersampling. How, then, can we better determine an optimal survey design for characterizing species richness and community composition across a range of conditions and capacities without compromising taxonomic resolution and statistical power? Researchers in the Marine Biodiversity Observation Network Pole to Pole of the Americas (MBON Pole to Pole) are surveying rocky shore macroinvertebrates and algal communities spanning ~107° of latitude and 10 biogeographic ecoregions to address this question. Here, we apply existing techniques in the form of fixed-coverage subsampling and a complementary multivariate analysis to determine the optimal effort necessary for characterizing species richness and community composition across the network sampling sites. We show that oversampling for species richness varied between ~20% and 400% at over half of studied areas, while some locations were under sampled by up to 50%. Multivariate error analysis also revealed that most of the localities were oversampled by several-fold for benthic community composition. From this analysis, we advocate for an unbalanced sampling approach to support field programs in the collection of high-quality data, where preliminary information is used to set the minimum required effort to generate robust values of diversity and composition on a site-to-site basis. As part of this recommendation, we provide statistical tools in the open-source R statistical software to aid researchers inimplementing optimization strategies and expanding the geographic footprint or sampling frequency of regional biodiversity survey programs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oceanography Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
MONITORING  
dc.subject
LARGE SCALE  
dc.subject
MBON  
dc.subject
INTERTIDAL  
dc.subject.classification
Conservación de la Biodiversidad  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Optimizing Large-Scale Biodiversity Sampling Effort: Toward an Unbalanced Survey Design: Toward an Unbalanced Survey Design  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-20T11:04:07Z  
dc.journal.volume
34  
dc.journal.number
2  
dc.journal.pagination
80-91  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Rockville  
dc.conicet.avisoEditorial
This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.  
dc.description.fil
Fil: Montes, Enrique. NOAA Atlantic Oceanographic and Meteorological Laboratory; Estados Unidos  
dc.description.fil
Fil: Lefcheck, Jonathan. Charles Darwin Foundation Santa Cruz; Ecuador  
dc.description.fil
Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Universidad Espíritu Santo; Ecuador  
dc.description.fil
Fil: Guerra-Castro, Edlin. Universidad Nacional Autónoma de México; México  
dc.description.fil
Fil: Klein, Eduardo. Universidad Simón Bolívar; Venezuela  
dc.description.fil
Fil: Kavanaugh, Maria T.. Oregon State University; Estados Unidos  
dc.description.fil
Fil: de Azevedo Mazzuco, Ana Carolina. Universidade Federal do Espírito Santo; Brasil  
dc.description.fil
Fil: Cordeiro, Cesar A.M.M.. Universidade Federal do Rio de Janeiro; Brasil  
dc.description.fil
Fil: Simoes, Nuno. Universidad Nacional Autónoma de México; México. Texas A&M University-Corpus Christi; Estados Unidos  
dc.description.fil
Fil: Macaya, Erasmo C.. Universidad de Concepción; Chile  
dc.description.fil
Fil: Moity, Nicolas. Charles Darwin Foundation; Ecuador  
dc.description.fil
Fil: Londoño-Cruz, Edgardo. Universidad del Valle; Colombia  
dc.description.fil
Fil: Helmuth, Brian. Northeastern University; Estados Unidos  
dc.description.fil
Fil: Choi, Francis. Northeastern University; Estados Unidos  
dc.description.fil
Fil: Soto, Eulogio H.. Universidad de Valparaíso; Chile  
dc.description.fil
Fil: Miloslavich, Patricia. University of Delaware; Estados Unidos  
dc.description.fil
Fil: Muller-Karger, Frank E.. University of South Florida; Estados Unidos  
dc.journal.title
Oceanography  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.5670/oceanog.2021.216  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://tos.org/oceanography/article/optimizing-large-scale-biodiversity-sampling-effort-toward-an-unbalanced-survey-design