Mostrar el registro sencillo del ítem
dc.contributor.author
Bravo, Gonzalo
dc.contributor.author
Moity, Nicolas
dc.contributor.author
Londoño-Cruz, Edgardo
dc.contributor.author
Muller-Karger, Frank
dc.contributor.author
Bigatti, Gregorio
dc.contributor.author
Klein, Eduardo
dc.contributor.author
Choi, Francis
dc.contributor.author
Parmalee, Lark
dc.contributor.author
Helmuth, Brian
dc.contributor.author
Montes, Enrique
dc.date.available
2022-09-23T17:16:43Z
dc.date.issued
2021-09
dc.identifier.citation
Bravo, Gonzalo; Moity, Nicolas; Londoño-Cruz, Edgardo; Muller-Karger, Frank; Bigatti, Gregorio; et al.; Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State; Frontiers Media; Frontiers In Marine Science; 8; 691313; 9-2021; 1-12
dc.identifier.uri
http://hdl.handle.net/11336/170269
dc.description.abstract
Standardized methods for effectively and rapidly monitoring changes in the biodiversity of marine ecosystems are critical to assess status and trends in ways that are comparable between locations and over time. In intertidal and subtidal habitats, estimates of fractional cover and abundance of organisms are typically obtained with traditional quadrat-based methods, and collection of photoquadrat imagery is a standard practice. However, visual analysis of quadrats, either in the field or from photographs, can be very time-consuming. Cutting-edge machine learning tools are now being used to annotate species records from photoquadrat imagery automatically, significantly reducing processing time of image collections. However, it is not always clear whether information is lost, and if so to what degree, using automated approaches. In this study, we compared results from visual quadrats versus automated photoquadrat assessments of macroalgae and sessile organisms on rocky shores across the American continent, from Patagonia (Argentina), Galapagos Islands (Ecuador), Gorgona Island (Colombian Pacific), and the northeast coast of the United States (Gulf of Maine) using the automated software CoralNet. Photoquadrat imagery was collected at the same time as visual surveys following a protocol implemented across the Americas by the Marine Biodiversity Observation Network (MBON) Pole to Pole of the Americas program. Our results show that photoquadrat machine learning annotations can estimate percent cover levels of intertidal benthic cover categories and functional groups (algae, bare substrate, and invertebrate cover) nearly identical to those from visual quadrat analysis. We found no statistical differences of cover estimations of dominant groups in photoquadrat images annotated by humans and those processed in CoralNet (binomial generalized linear mixed model or GLMM). Differences between these analyses were not significant, resulting in a Bray-Curtis average distance of 0.13 (sd 0.11) for the full label set, and 0.12 (sd 0.14) for functional groups. This is the first time that CoralNet automated annotation software has been used to monitor “Invertebrate Abundance and Distribution” and “Macroalgal Canopy Cover and Composition” Essential Ocean Variables (EOVs) in intertidal habitats. We recommend its use for rapid, continuous surveys over expanded geographical scales and monitoring of intertidal areas globally.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Frontiers Media
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
AMERICAS
dc.subject
BIODIVERSITY MONITORING
dc.subject
MACHINE LEARNING
dc.subject
MARINE BIODIVERSITY
dc.subject
ESSENTIAL OCEAN VARIABLES (EOVS)
dc.subject
PHOTOQUADRATS
dc.subject
ROCKY INTERTIDAL ZONE
dc.subject
CORALNET
dc.subject.classification
Conservación de la Biodiversidad
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robots Versus Humans: Automated Annotation Accurately Quantifies Essential Ocean Variables of Rocky Intertidal Functional Groups and Habitat State
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-20T11:04:09Z
dc.identifier.eissn
2296-7745
dc.journal.volume
8
dc.journal.number
691313
dc.journal.pagination
1-12
dc.journal.pais
Suiza
dc.journal.ciudad
Lausana
dc.conicet.avisoEditorial
Copyright © 2021 Bravo, Moity, Londoño-Cruz, Muller-Karger, Bigatti, Klein, Choi, Parmalee, Helmuth and Montes. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
dc.description.fil
Fil: Bravo, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
dc.description.fil
Fil: Moity, Nicolas. Charles Darwin Foundation Santa Cruz; Ecuador
dc.description.fil
Fil: Londoño-Cruz, Edgardo. Universidad del Valle; Colombia
dc.description.fil
Fil: Muller-Karger, Frank. University of South Florida St. Petersburg; Estados Unidos
dc.description.fil
Fil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina. Universidad Espíritu Santo; Ecuador
dc.description.fil
Fil: Klein, Eduardo. Universidad Simón Bolívar; Venezuela
dc.description.fil
Fil: Choi, Francis. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
dc.description.fil
Fil: Parmalee, Lark. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
dc.description.fil
Fil: Helmuth, Brian. Northeastern University; Estados Unidos. University Northeastern; Estados Unidos
dc.description.fil
Fil: Montes, Enrique. University of South Florida St. Petersburg; Estados Unidos
dc.journal.title
Frontiers In Marine Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fmars.2021.691313
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fmars.2021.691313/full
Archivos asociados