Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Kinetic Monte Carlo method applied to micrometric particle detachment mechanisms by aerodynamic forces

Villagrán Olivares, Marcela CamilaIcon ; Benito, Jesica GiseleIcon ; Uñac, Rodolfo OmarIcon ; Vidales, Ana MariaIcon
Fecha de publicación: 11/2021
Editorial: IOP Publishing
Revista: Journal of Physics: Condensed Matter
ISSN: 0953-8984
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Fluidos y Plasma

Resumen

The formulation of a kinetic Monte Carlo simulation to account for the different possible mechanisms present in the problem of resuspension of aerosol particles is addressed as an extension of a former model Benito et al (2016 J. Aerosol Sci. 100 26-37). The re-entrainment of micrometer particles to airflow when detached from a surface by aerodynamic forces is modeled using the similitude of the problem with the desorption process from heterogeneous surfaces. Depending on the relative role of the intervening forces, three main mechanisms for movement initiation can be present: rolling, sliding and lifting-off. Three different transition probabilities are defined for each mechanism and the corresponding transition rates calculated for the kinetic process to be simulated. The decisive factor for the development of the model is to set an appropriate dynamical hierarchy to simulate correctly the evolution of the transition rates as the airflow velocity increases, reflecting the stochastic nature of the process, not always fully captured by other Monte Carlo approaches. The model is applied to spherical and elongated particles on a flat surface, reproducing qualitatively well the experimental trends found by other authors for the case of particles with different shapes. It is also demonstrated that, for elongated particles, the main mechanism assisting the detachment is not rolling but sliding, underscoring the need for an adequate choice of the particles shape and detachment mechanism when looking for the critical conditions for particle removal from surfaces.
Palabras clave: ADHESION , DRAG FORCE , MONTE CARLO , REMOVAL , RESUSPENSION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.397Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/170234
DOI: https://doi.org/10.1088/1361-648X/ac3690
URL: https://iopscience.iop.org/article/10.1088/1361-648X/ac3690
Colecciones
Articulos(INFAP)
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Citación
Villagrán Olivares, Marcela Camila; Benito, Jesica Gisele; Uñac, Rodolfo Omar; Vidales, Ana Maria; Kinetic Monte Carlo method applied to micrometric particle detachment mechanisms by aerodynamic forces; IOP Publishing; Journal of Physics: Condensed Matter; 34; 7; 11-2021; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES