Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Wavelet shrinkage using adaptive structured sparsity constraints

Tomassi, Diego RodolfoIcon ; Milone, Diego HumbertoIcon ; Nelson, James D.B.
Fecha de publicación: 01/2015
Editorial: Elsevier
Revista: Signal Processing
ISSN: 0165-1684
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Structured sparsity approaches have recently received much attention in the statistics, machine learning, and signal processing communities. A common strategy is to exploit or assume prior information about structural dependencies inherent in the data; the solution is encouraged to behave as such by the inclusion of an appropriate regularisation term which enforces structured sparsity constraints over sub-groups of data. An important variant of this idea considers the tree-like dependency structures often apparent in wavelet decompositions. However, both the constituent groups and their associated weights in the regularisation term are typically defined a priori. We here introduce an adaptive wavelet denoising framework whereby a sparsity-inducing regulariser is modified based on information extracted from the signal itself. In particular, we use the same wavelet decomposition to detect the location of salient features in the signal, such as jumps or sharp bumps. Given these locations, the weights in the regulariser associated to the groups of coefficients that cover these time locations are modified in order to favour retention of those coefficients. Denoising experiments show that, not only does the adaptive method preserve the salient features better than the non-adaptive constraints, but it also delivers significantly better shrinkage over the signal as a whole.
Palabras clave: Structured Sparsity , Regularised Regression , Denoising , Dual-Tree Complex Wavelet Transform
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.123Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/17014
DOI: http://dx.doi.org/10.1016/j.sigpro.2014.07.001
URL: http://www.sciencedirect.com/science/article/pii/S0165168414002953
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Tomassi, Diego Rodolfo; Milone, Diego Humberto; Nelson, James D.B.; Wavelet shrinkage using adaptive structured sparsity constraints; Elsevier; Signal Processing; 106; 1-2015; 73-87
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES