Mostrar el registro sencillo del ítem

dc.contributor.author
Bea, Edgar Alejandro  
dc.contributor.author
Carusela, María Florencia  
dc.contributor.author
Soba, Alejandro  
dc.contributor.author
Monastra, Alejandro Gabriel  
dc.contributor.author
Mancardo Viotti, Agustin Matias  
dc.date.available
2022-09-22T14:43:48Z  
dc.date.issued
2020-10  
dc.identifier.citation
Bea, Edgar Alejandro; Carusela, María Florencia; Soba, Alejandro; Monastra, Alejandro Gabriel; Mancardo Viotti, Agustin Matias; Thermal conductance of structured silicon nanocrystals; IOP Publishing; Modelling And Simulation In Materials Science And Engineering; 28; 7; 10-2020; 1-15  
dc.identifier.issn
0965-0393  
dc.identifier.uri
http://hdl.handle.net/11336/169981  
dc.description.abstract
We calculate the thermal conductance of a structured silicon nanocrystal with a hole of different sizes. The numerical study is based on non-equilibrium molecular dynamics simulations using two potential models for the interatomic interactions: (i) an empirical Tersoff-Brenner (Tersoff) potential; (ii) a semi-empirical tight binding (TB) potential. TB potential model predicts a similar thermal conductance for the nanocrystal with no hole and with a small size hole, which contrasts with the monotonic decrease predicted by Tersoff potential model. In addition, thermal conductance decreasing is higher for TB potential model when the surface-to-volume ratio increases. This points out that to study thermal properties of nanostructures with high surface-to-volume ratio is mandatory the use of potential models with high transferability to take adequately into account the relevant quantum physical effects due to boundaries and surfaces.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HEAT TRANSPORT  
dc.subject
MOLECULAR DYNAMICS  
dc.subject
NANOCRYSTAL  
dc.subject
SILICON  
dc.subject
TERSOFF POTENTIAL  
dc.subject
THERMAL CONDUCTIVITY  
dc.subject
TIGHT BINDING POTENTIAL  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Thermal conductance of structured silicon nanocrystals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-19T20:38:31Z  
dc.journal.volume
28  
dc.journal.number
7  
dc.journal.pagination
1-15  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Bea, Edgar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina  
dc.description.fil
Fil: Carusela, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina  
dc.description.fil
Fil: Monastra, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Mancardo Viotti, Agustin Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.journal.title
Modelling And Simulation In Materials Science And Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-651X/aba8eb  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1088/1361-651X/aba8eb