Mostrar el registro sencillo del ítem

dc.contributor.author
Bonelli, Lucas Emmanuel  
dc.contributor.author
Cerrudo, Anibal Alejandro  
dc.contributor.author
Olmedo Pico, Lía B.  
dc.contributor.author
Di Matteo, Javier Antonio  
dc.contributor.author
Monzon, Juan Pablo  
dc.contributor.author
Rizzalli, Roberto Héctor  
dc.contributor.author
Andrade, Fernando Héctor  
dc.date.available
2022-09-20T17:57:56Z  
dc.date.issued
2020-07  
dc.identifier.citation
Bonelli, Lucas Emmanuel; Cerrudo, Anibal Alejandro; Olmedo Pico, Lía B.; Di Matteo, Javier Antonio; Monzon, Juan Pablo; et al.; Does the photo-thermal environment limit post-flowering maize growth?; Elsevier Science; Field Crops Research; 252; 7-2020; 1-10  
dc.identifier.issn
0378-4290  
dc.identifier.uri
http://hdl.handle.net/11336/169645  
dc.description.abstract
After canopy closure and in the absence of limitations by water or nutrient availability, crop growth rate (CGR) of maize (Zea mays L.) is ultimately constrained by the daily incident radiation and temperature of the environment. Sustaining maximal canopy photosynthetic capacity after-flowering is, then, a necessary but not a sufficient condition to increase maize dry-matter production. The aim of the present study was to determine the extent of the photo-thermal environment limitation to CGR during the post-flowering period in current maize crops. Dynamic of CGR was studied in two well-irrigated and nourished maize field experiments (Exp. 1 and Exp. 2 for 2010−11 and 2011−12 cropping seasons, respectively) on conventional crops (i.e. full-season hybrid planted early in the season) at Balcarce, Argentina (37° 45’ S, 58° 18’ W; 130 m a.s.l.). Two independent methods were performed to benchmark the CGR of these conventional crops during the post-flowering period: i) empirical CGR values obtained under the same weather conditions from younger maize crops, and ii) theoretically estimated potential CGR, obtained as a function of daily incident radiation and potential radiation use-efficiency (RUE). Conventional crops reached the maximal CGR near flowering in mid-January, being 51.2 g m−2 d−1 and 58.8 g m−2 d−1 in Exp. 1 and Exp. 2, respectively. Afterwards, CGR decreased progressively towards crops maturity late in March. Estimates, from either the empirical or the theoretical method, indicated that although attainable-CGR decreases progressively towards the end of the cropping season, it sustains higher values than those achieved by conventional crops after flowering. Differences in attainable vs. actual-CGR was almost exclusively attributable to RUE, which, in turn, could not be explained solely by the post-flowering foliar nitrogen withdrawal. Differences between actual (1987 g m−2 in Exp. 1 and 1614 g m−2 in Exp. 2) and potential post-flowering dry-matter production defined gaps that were in the range 18.2%–47.8%. From these results, it can be concluded that the photo-thermal environment is not, at least so far, the limiting factor to the post-flowering maize growth. Further research is needed, however, to analyze the viability of increasing potential yield of maize through the closure of these estimated gaps.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CROP GROWTH RATE  
dc.subject
MAIZE  
dc.subject
POTENTIAL YIELD  
dc.subject
RADIATION-USE EFFICIENCY  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Does the photo-thermal environment limit post-flowering maize growth?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-16T20:46:47Z  
dc.journal.volume
252  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bonelli, Lucas Emmanuel. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina  
dc.description.fil
Fil: Cerrudo, Anibal Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.description.fil
Fil: Olmedo Pico, Lía B.. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.description.fil
Fil: Di Matteo, Javier Antonio. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina  
dc.description.fil
Fil: Monzon, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; Argentina  
dc.description.fil
Fil: Rizzalli, Roberto Héctor. Universidad Nacional de Mar del Plata; Argentina  
dc.description.fil
Fil: Andrade, Fernando Héctor. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.journal.title
Field Crops Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0378429019320076  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.fcr.2020.107805