Mostrar el registro sencillo del ítem

dc.contributor.author
Cook, R. Dennis  
dc.contributor.author
Forzani, Liliana Maria  
dc.date.available
2022-09-19T20:23:02Z  
dc.date.issued
2020-10  
dc.identifier.citation
Cook, R. Dennis; Forzani, Liliana Maria; Envelopes: A new chapter in partial least squares regression; John Wiley & Sons Ltd; Journal of Chemometrics; 34; 10; 10-2020  
dc.identifier.issn
0886-9383  
dc.identifier.uri
http://hdl.handle.net/11336/169385  
dc.description.abstract
Partial least squares (PLS) regression has been a very popular method for prediction. The method can in a natural way be connected to a statistical model, which now has been extended and further developed in terms of an envelope model. Concentrating on the univariate case, several estimators of the regression vector in this model are defined, including the ordinary PLS estimator, the maximum likelihood envelope estimator, and a recently proposed Bayes PLS estimator. These are compared with respect to prediction error by systematic simulations. The simulations indicate that Bayes PLS performs well compared with the other methods. The model for partial least squares is presented in 5 ways. Three estimators in the model are introduced and compared through simulations. The ordinary partial least‐squares estimator does well, but the newly introduced Bayes estimator does better in many respects.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PARTIAL LEAST SQUARE  
dc.subject
SUFFICIENT DIMENSION REDUCTION  
dc.subject
BIG DATA  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Envelopes: A new chapter in partial least squares regression  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-03-14T21:07:37Z  
dc.journal.volume
34  
dc.journal.number
10  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos  
dc.description.fil
Fil: Forzani, Liliana Maria. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of Chemometrics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/cem.3294  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/cem.3294