Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Corach, Gustavo  
dc.contributor.author
Mbekhta, M.  
dc.date.available
2015-08-14T21:14:49Z  
dc.date.issued
2013-12  
dc.identifier.citation
Andruchow, Esteban; Corach, Gustavo; Mbekhta, M.; A geometry for split operators; Springer; Integral Equations and Operator Theory; 77; 4; 12-2013; 559-579  
dc.identifier.issn
0378-620X  
dc.identifier.uri
http://hdl.handle.net/11336/1691  
dc.description.abstract
We study the set X of split operators acting in the Hilbert space H: X = {T ∈ B(H) : N(T) ∩ R(T) = {0} and N(T) + R(T) = H}. Inside X , we consider the set Y: Y = {T ∈ X : N(T) ⊥ R(T)}. Several characterizations of these sets are given. For instance T ∈ X if and only if there exists an oblique projection Q whose range is N(T) such that T + Q is invertible, if and only if T posseses a commuting (necessarilly unique) pseudo-inverse S (i.e. T S = ST,TST = T and STS = S). Analogous characterizations are given for Y. Two natural maps are considered: q : X → Q := {oblique projections in H}, q(T) = PR(T )//N(T ) and p : Y → P := {orthogonal projections in H}, p(T) = PR(T ), where PR(T )//N(T ) denotes the projection onto R(T) with nullspace N(T), and PR(T ) denotes the orthogonal projection onto R(T). These maps are in general non continuous, subsets of continuity are studied. For the map q these are: similarity orbits, and the subsets Xck ⊂ X of operators with rank k < ∞, and XFk ⊂ X of Fredholm operators with nullity k < ∞. For the map p there are analogous results. We show that the interior of X is XF0 ∪ XF1 , and that Xck and XFk are arc-wise connected differentiable manifolds.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Split Operator  
dc.subject
Oblique Projection  
dc.subject
Projections Pseudo-Inverses  
dc.subject
Group Inverse Operators  
dc.subject
Ep Operators  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A geometry for split operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.identifier.eissn
1420-8989  
dc.journal.volume
77  
dc.journal.number
4  
dc.journal.pagination
559-579  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Mbekhta, M.. Université de Lille; Francia  
dc.journal.title
Integral Equations and Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00020-013-2086-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00020-013-2086-9