Mostrar el registro sencillo del ítem

dc.contributor.author
Hadad, Hernán Ricardo  
dc.contributor.author
Maine, Maria Alejandra  
dc.contributor.author
Mufarrege, María de Las Mercedes  
dc.contributor.author
Di Luca, Gisela Alfonsina  
dc.contributor.author
Sánchez, Gabriela Cristina  
dc.contributor.author
Nocetti, Emanuel  
dc.contributor.other
Shah, Maulin P.  
dc.date.available
2022-09-15T15:17:11Z  
dc.date.issued
2021  
dc.identifier.citation
Hadad, Hernán Ricardo; Maine, Maria Alejandra; Mufarrege, María de Las Mercedes; Di Luca, Gisela Alfonsina; Sánchez, Gabriela Cristina; et al.; Plant metal accumulation in wetlands systems; Elsevier; 2021; 445-465  
dc.identifier.isbn
978-0-12-820318-7  
dc.identifier.uri
http://hdl.handle.net/11336/168953  
dc.description.abstract
Several wastewaters, such as those from metallurgical industries, landfill leachate,and runoff waters contain metals (Arunbabu, Indu, & Ramasamy, 2017; Danet al., 2017; Luo, Sun, & Zhang, 2019; Maine et al., 2017). Phytoremediation is analternative eco-friendly technology applied for the treatment of contaminated watersand soils (Pilon-Smits, 2005; Vymazal, 2008). This technology uses aquatic orterrestrial plants to remove metals from water or soil. There are different phytoremediationmethods. One of them is phytostabilization, which consists of metal immobilizationand accumulation in the belowground plant tissues and the soil (Eid &Shaltout, 2014). Another method is phytoextraction using hyperaccumulator plants,which are capable of accumulate metals remarkably in their aboveground tissues fromsoil or sediment (Bose, Vedamati, Rai, & Ramanathan, 2008; Weis & Weis, 2004).Natural wetlands possess rich biodiversity. These ecosystems frequently showmetal contamination originated by industrial activities. Macrophytes accumulatemetals purifying the contaminated water bodies through mechanisms such as filtration,ion sorption, and influencing the redox conditions of the rhizosphere (Maine,Suñé, Hadad, Sánchez, & Bonetto, 2006; Wright & Otte, 1999). In comparison withthe surrounding water, metal concentrations in aquatic plant tissues are higher dueto the fibrous roots and other submerged organs present large surface area in contactwith water (Bragato et al., 2009). In natural wetlands, macrophytes were proposed asefficient biomonitors (Alonso et al., 2018; Bonanno, 2011, 2013; Bonanno & Lo Giudice,2010; Eid, Shaltout, El-Sheikh, & Asaeda, 2012). The metal uptake ability isdifferent among the wetland plant species (Deng, Yea, & Wong, 2004; Hadad, Maine,Natale, & Bonetto, 2007; Hadad, Mufarrege, Di Luca, & Maine, 2018). Plant speciesand their growth stage affect the metal uptake, accumulation, and translocation (Luoet al., 2019; Mufarrege, Hadad, Di Luca, & Maine, 2015; Yu, Gu, & Xing, 2008).Macrophytes can tolerate high metal concentrations, being key components inconstructed wetlands (Brix, 1994; Hegazy, Abdel-Ghani, & El-Chaghaby, 2011;Vymazal, 2008, 2011). Knowledge of the accumulation efficiency and tolerance ofdifferent wetland plants is necessary to choose the most convenient macrophytes tobe used in phytoremediation techniques, such as wetland systems (Duman, Cicek, &Sezen, 2007).Treatment wetlands can remediate efficiently several types of wastewaters (Hammer,1989; Kadlec & Knight, 1996; Kadlec & Wallace, 2009; Vymazal, 2011).These systems were widely used to remediate contaminants coming from sewage(Arden & Ma, 2018; Song et al., 2006), industrial effluents (Maine, Suñé, Hadad,Sánchez, & Bonetto, 2007; Maine, Suñé, Hadad, Sánchez, & Bonetto, 2009; Maineet al., 2013, 2017, 2019; Wu, Kuschk, Brix, Vymazal, & Dong, 2014), storm andmine waters (Di Luca, Mufarrege, Hadad, & Maine, 2019; Zhang et al., 2014),among others wastewaters (CamañoSilvestrini, Maine, Hadad, Nocetti, & Campagnoli,2019; Vymazal, 2008). The processes that occur among macrophytes andcontaminants are explained by chemical, biological, and physical approaches. Themain processes that could be mentioned are adsorption on plant tissues (roots andother plant organs in contact with the wastewater), root absorption and translocationto leaves, and precipitation enhanced by microorganisms and root secretions. Themechanisms operating in plant metal removal are different for each plant speciesand each metal (Maine, Hadad, Sánchez, & Caffaratti, 2016; Mufarrege et al., 2018).However, they are not sufficiently understood (Wu et al., 2015).This chapter describes macrophyte metal accumulation at different scales ofstudy, including natural wetlands that receive urban pollutants and wetlands constructedfor the treatment of several wastewaters. This information may contribute tothe design and management of wetland systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
TREATMENT WETLANDS  
dc.subject
METALS  
dc.subject
PLANT ACCUMULATION  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Plant metal accumulation in wetlands systems  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2022-09-09T10:29:25Z  
dc.journal.pagination
445-465  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdan  
dc.description.fil
Fil: Hadad, Hernán Ricardo. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina  
dc.description.fil
Fil: Maine, Maria Alejandra. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina  
dc.description.fil
Fil: Mufarrege, María de Las Mercedes. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina  
dc.description.fil
Fil: Di Luca, Gisela Alfonsina. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina  
dc.description.fil
Fil: Sánchez, Gabriela Cristina. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina  
dc.description.fil
Fil: Nocetti, Emanuel. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780128203187000204  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/B978-0-12-820318-7.00020-4  
dc.conicet.paginas
504  
dc.source.titulo
Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and Greener Society