Mostrar el registro sencillo del ítem

dc.contributor.author
Rattalino Edreira, Juan Ignacio  
dc.contributor.author
Andrade, José Francisco  
dc.contributor.author
Cassman, Kenneth G.  
dc.contributor.author
van Ittersum, Martin K.  
dc.contributor.author
van Loon, Marloes P.  
dc.contributor.author
Grassini, Patricio  
dc.date.available
2022-09-13T14:28:36Z  
dc.date.issued
2021-10  
dc.identifier.citation
Rattalino Edreira, Juan Ignacio; Andrade, José Francisco; Cassman, Kenneth G.; van Ittersum, Martin K.; van Loon, Marloes P.; et al.; Spatial frameworks for robust estimation of yield gaps; Springer Nature; Nature Food; 2; 10; 10-2021; 773-779  
dc.identifier.uri
http://hdl.handle.net/11336/168531  
dc.description.abstract
Food security interventions and policies need reliable estimates of crop production and the scope to enhance production on existing cropland. Here we assess the performance of two widely used ‘top-down’ gridded frameworks (Global Agro-ecological Zones and Agricultural Model Intercomparison and Improvement Project) versus an alternative ‘bottom-up’ approach (Global Yield Gap Atlas). The Global Yield Gap Atlas estimates extra production potential locally for a number of sites representing major breadbaskets and then upscales the results to larger spatial scales. We find that estimates from top-down frameworks are alarmingly unlikely, with estimated potential production being lower than current farm production at some locations. The consequences of using these coarse estimates to predict food security are illustrated by an example for sub-Saharan Africa, where using different approaches would lead to different prognoses about future cereal self-sufficiency. Our study shows that foresight about food security and associated agriculture research priority setting based on yield potential and yield gaps derived from top-down approaches are subject to a high degree of uncertainty and would benefit from incorporating estimates from bottom-up approaches.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Nature  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
NO KEYWORDS  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Spatial frameworks for robust estimation of yield gaps  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-23T20:51:06Z  
dc.identifier.eissn
2662-1355  
dc.journal.volume
2  
dc.journal.number
10  
dc.journal.pagination
773-779  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Rattalino Edreira, Juan Ignacio. Universidad de Nebraska - Lincoln; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Andrade, José Francisco. Universidad de Nebraska - Lincoln; Estados Unidos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Cassman, Kenneth G.. Universidad de Nebraska - Lincoln; Estados Unidos  
dc.description.fil
Fil: van Ittersum, Martin K.. University of Agriculture Wageningen; Países Bajos  
dc.description.fil
Fil: van Loon, Marloes P.. University of Agriculture Wageningen; Países Bajos  
dc.description.fil
Fil: Grassini, Patricio. Universidad de Nebraska - Lincoln; Estados Unidos  
dc.journal.title
Nature Food  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s43016-021-00365-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s43016-021-00365-y