Mostrar el registro sencillo del ítem

dc.contributor.author
Pellegrini, Pedro  
dc.contributor.author
Cossani, Cesar Mariano  
dc.contributor.author
Di Bella, Carlos Marcelo  
dc.contributor.author
Piñeiro, Gervasio  
dc.contributor.author
Sadras, Victor Oscar  
dc.contributor.author
Oesterheld, Martin  
dc.date.available
2022-09-12T18:53:29Z  
dc.date.issued
2020-04  
dc.identifier.citation
Pellegrini, Pedro; Cossani, Cesar Mariano; Di Bella, Carlos Marcelo; Piñeiro, Gervasio; Sadras, Victor Oscar; et al.; Simple regression models to estimate light interception in wheat crops with Sentinel‐2 and a handheld sensor; Crop Science Society of America; Crop Science; 60; 3; 4-2020; 1607-1616  
dc.identifier.issn
0011-183X  
dc.identifier.uri
http://hdl.handle.net/11336/168433  
dc.description.abstract
Capture of radiation by crop canopies drives growth rate, grain set, and yield. Since the fraction of photosynthetically active radiation absorbed by green area (fAPARg) correlates with normalized difference vegetation index (NDVI), remote sensors have been used to monitor vegetation. With a 10-m spatial resolution and 5-d revisiting time, the recently launched Sentinel-2 satellite is a promising tool for fAPARg monitoring. However, the available algorithm to estimate fAPARg is based on simulations of canopy interception of several vegetation types and was never tested in field crops. Handheld sensors, such as GreenSeeker, are another alternative to estimate fAPARg. Our objectives were (a) to test the ability of indices derived from Sentinel-2 and GreenSeeker NDVI to capture fAPARg of wheat (Triticum aestivum L.) crops, (b) to compare these sensors’ performance against the moderate resolution imaging spectroradiometer (MODIS), and (c) to compare our Sentinel-2 model estimations with the available algorithm. In wheat fields in the southwest Argentinean Pampas, on several sampling dates, we measured fAPARg with a quantum light sensor and NDVI with a GreenSeeker. We regressed fAPARg measurements with vegetation indices from the different sources and selected the best models. Sentinel-2 and GreenSeeker NDVI precisely estimated fAPARg, with a performance similar to MODIS (p <.05; RMSD = 0.09, 0.11, and 0.08; R2 =.89,.88, and.95, respectively). The available algorithm to estimate fAPARg with Sentinel-2 yielded biased estimations, mainly in the lower range of fAPARg. These results suggest that simple models may provide fAPARg estimations with Sentinel-2 and GreenSeeker in wheat crops with an accuracy suitable for agricultural applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Crop Science Society of America  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
fAPAR  
dc.subject
Remote Sensing  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Simple regression models to estimate light interception in wheat crops with Sentinel‐2 and a handheld sensor  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T15:21:00Z  
dc.journal.volume
60  
dc.journal.number
3  
dc.journal.pagination
1607-1616  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Baltimore  
dc.description.fil
Fil: Pellegrini, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Cossani, Cesar Mariano. South Australian Research And Development Institute; Australia. University of Adelaide; Australia  
dc.description.fil
Fil: Di Bella, Carlos Marcelo. Universidad de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Piñeiro, Gervasio. Universidad de Buenos Aires; Argentina. Universidad de la Republica; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sadras, Victor Oscar. University of Adelaide; Australia. South Australian Research And Development Institute; Australia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina  
dc.description.fil
Fil: Oesterheld, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.journal.title
Crop Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/csc2.20129  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/csc2.20129