Mostrar el registro sencillo del ítem

dc.contributor.author
Gómez, Julián Luis  
dc.contributor.author
Velis, Danilo Ruben  
dc.date.available
2022-09-12T12:57:29Z  
dc.date.issued
2020-03  
dc.identifier.citation
Gómez, Julián Luis; Velis, Danilo Ruben; Footprint removal from seismic data with residual dictionary learning; Society of Exploration Geophysicists; Geophysics; 85; 4; 3-2020; V355-V365  
dc.identifier.issn
0016-8033  
dc.identifier.uri
http://hdl.handle.net/11336/168295  
dc.description.abstract
Dictionary learning (DL) is a machine learning technique that can be used to find a sparse representation of a given data set by means of a relatively small set of atoms, which are learned from the input data. DL allows for the removal of random noise from seismic data very effectively. However, when seismic data are contaminated with footprint noise, the atoms of the learned dictionary are often a mixture of data and coherent noise patterns. In this scenario, DL requires carrying out a morphological attribute classification of the atoms to separate the noisy atoms from the dictionary. Instead, we have developed a novel DL strategy for the removal of footprint patterns in 3D seismic data that is based on an augmented dictionary built upon appropriately filtering the learned atoms. The resulting augmented dictionary, which contains the filtered atoms and their residuals, has a high discriminative power in separating signal and footprint atoms, thus precluding the use of any statistical classification strategy to segregate the atoms of the learned dictionary. We filter the atoms using a domain transform filtering approach, a very efficient edge-preserving smoothing algorithm. As in the so-called coherence-constrained DL method, the proposed DL strategy does not require the user to know or adjust the noise level or the sparsity of the solution for each data set. Furthermore, it only requires one pass of DL and is shown to produce successful transfer learning. This increases the speed of the denoising processing because the augmented dictionary does not need to be calculated for each time slice of the input data volume. Results on synthetic and 3D public-domain poststack field data demonstrate effective footprint removal with accurate edge preservation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Society of Exploration Geophysicists  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ALGORITHM  
dc.subject
FILTERING  
dc.subject
MACHINE LEARNING  
dc.subject
SIGNAL PROCESSING  
dc.subject
SPARSE  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Footprint removal from seismic data with residual dictionary learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-09T18:02:01Z  
dc.journal.volume
85  
dc.journal.number
4  
dc.journal.pagination
V355-V365  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Gómez, Julián Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; Argentina  
dc.description.fil
Fil: Velis, Danilo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.journal.title
Geophysics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://library.seg.org/doi/10.1190/geo2019-0482.1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1190/geo2019-0482.1