Mostrar el registro sencillo del ítem

dc.contributor.author
Nelson, Tammie R.  
dc.contributor.author
White, Alexander J.  
dc.contributor.author
Bjorgaard, Josiah A.  
dc.contributor.author
Sifain, Andrew E.  
dc.contributor.author
Zhang, Yu  
dc.contributor.author
Nebgen, Benjamin  
dc.contributor.author
Fernández Alberti, Sebastián  
dc.contributor.author
Mozyrsky, Dmitry  
dc.contributor.author
Roitberg, Adrián  
dc.contributor.author
Tretiak, Sergei  
dc.date.available
2022-09-12T12:24:56Z  
dc.date.issued
2020-02  
dc.identifier.citation
Nelson, Tammie R.; White, Alexander J.; Bjorgaard, Josiah A.; Sifain, Andrew E.; Zhang, Yu; et al.; Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials; American Chemical Society; Chemical Reviews.; 120; 4; 2-2020; 2215-2287  
dc.identifier.issn
0009-2665  
dc.identifier.uri
http://hdl.handle.net/11336/168278  
dc.description.abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born− Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Excited-state  
dc.subject
Nonadiabatic dynamics  
dc.subject
Conjugated molecules  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-09T17:59:40Z  
dc.identifier.eissn
1520-6890  
dc.journal.volume
120  
dc.journal.number
4  
dc.journal.pagination
2215-2287  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington D.C  
dc.description.fil
Fil: Nelson, Tammie R.. Los Alamos National Laboratory; Estados Unidos  
dc.description.fil
Fil: White, Alexander J.. Los Alamos National Laboratory; Estados Unidos  
dc.description.fil
Fil: Bjorgaard, Josiah A.. Los Alamos National Laboratory; Estados Unidos  
dc.description.fil
Fil: Sifain, Andrew E.. Army Research Laboratory; Estados Unidos. Los Alamos National Laboratory; Estados Unidos  
dc.description.fil
Fil: Zhang, Yu. Los Alamos National Laboratory; Estados Unidos  
dc.description.fil
Fil: Nebgen, Benjamin. Los Alamos National Laboratory; Estados Unidos  
dc.description.fil
Fil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; Argentina  
dc.description.fil
Fil: Mozyrsky, Dmitry. Los Alamos National Laboratory; Estados Unidos  
dc.description.fil
Fil: Roitberg, Adrián. University of Florida; Estados Unidos  
dc.description.fil
Fil: Tretiak, Sergei. Los Alamos National Laboratory; Estados Unidos  
dc.journal.title
Chemical Reviews.  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.chemrev.9b00447  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00447