Mostrar el registro sencillo del ítem
dc.contributor.author
Gudowska Nowak, E.
dc.contributor.author
Nowak, M. A.
dc.contributor.author
Chialvo, Dante Renato
dc.contributor.author
Ochab, J. K.
dc.contributor.author
Tarnowski, W.
dc.date.available
2022-09-09T17:27:04Z
dc.date.issued
2020-02
dc.identifier.citation
Gudowska Nowak, E.; Nowak, M. A.; Chialvo, Dante Renato; Ochab, J. K.; Tarnowski, W.; From Synaptic Interactions to Collective Dynamics in Random Neuronal Networks Models: Critical Role of Eigenvectors and Transient Behavior; M I T Press; Neural Computation; 32; 2; 2-2020; 395-423
dc.identifier.issn
0899-7667
dc.identifier.uri
http://hdl.handle.net/11336/168176
dc.description.abstract
The study of neuronal interactions is at the center of several big collaborative neuroscience projects (including the Human Connectome Project, the Blue Brain Project, and the Brainome) that attempt to obtain a detailed map of the entire brain. Under certain constraints, mathematical theory can advance predictions of the expected neural dynamics based solely on the statistical properties of the synaptic interaction matrix. This work explores the application of free random variables to the study of large synaptic interaction matrices. Besides recovering in a straightforward way known results on eigenspectra in types of models of neural networks proposed by Rajan and Abbott (2006), we extend them to heavy-tailed distributions of interactions. More important, we analytically derive the behavior of eigenvector overlaps, which determine the stability of the spectra. We observe that on imposing the neuronal excitation/inhibition balance, despite the eigenvalues remaining unchanged, their stability dramatically decreases due to the strong nonorthogonality of associated eigenvectors. This leads us to the conclusion that understanding the temporal evolution of asymmetric neural networks requires considering the entangled dynamics of both eigenvectors and eigenvalues, which might bear consequences for learning and memory processes in these models. Considering the success of free random variables theory in a wide variety of disciplines, we hope that the results presented here foster the additional application of these ideas in the area of brain sciences.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
M I T Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
neuronal networks
dc.subject
random matrix theory
dc.subject
eigenvectors
dc.subject
collective dynamics
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
From Synaptic Interactions to Collective Dynamics in Random Neuronal Networks Models: Critical Role of Eigenvectors and Transient Behavior
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-08T15:19:40Z
dc.journal.volume
32
dc.journal.number
2
dc.journal.pagination
395-423
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Gudowska Nowak, E.. Jagiellonian University; Polonia
dc.description.fil
Fil: Nowak, M. A.. Jagiellonian University; Polonia
dc.description.fil
Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Ochab, J. K.. Jagiellonian University; Polonia
dc.description.fil
Fil: Tarnowski, W.. Jagiellonian University; Polonia
dc.journal.title
Neural Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01253
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1162/neco_a_01253
Archivos asociados