Mostrar el registro sencillo del ítem

dc.contributor.author
Gudowska Nowak, E.  
dc.contributor.author
Nowak, M. A.  
dc.contributor.author
Chialvo, Dante Renato  
dc.contributor.author
Ochab, J. K.  
dc.contributor.author
Tarnowski, W.  
dc.date.available
2022-09-09T17:27:04Z  
dc.date.issued
2020-02  
dc.identifier.citation
Gudowska Nowak, E.; Nowak, M. A.; Chialvo, Dante Renato; Ochab, J. K.; Tarnowski, W.; From Synaptic Interactions to Collective Dynamics in Random Neuronal Networks Models: Critical Role of Eigenvectors and Transient Behavior; M I T Press; Neural Computation; 32; 2; 2-2020; 395-423  
dc.identifier.issn
0899-7667  
dc.identifier.uri
http://hdl.handle.net/11336/168176  
dc.description.abstract
The study of neuronal interactions is at the center of several big collaborative neuroscience projects (including the Human Connectome Project, the Blue Brain Project, and the Brainome) that attempt to obtain a detailed map of the entire brain. Under certain constraints, mathematical theory can advance predictions of the expected neural dynamics based solely on the statistical properties of the synaptic interaction matrix. This work explores the application of free random variables to the study of large synaptic interaction matrices. Besides recovering in a straightforward way known results on eigenspectra in types of models of neural networks proposed by Rajan and Abbott (2006), we extend them to heavy-tailed distributions of interactions. More important, we analytically derive the behavior of eigenvector overlaps, which determine the stability of the spectra. We observe that on imposing the neuronal excitation/inhibition balance, despite the eigenvalues remaining unchanged, their stability dramatically decreases due to the strong nonorthogonality of associated eigenvectors. This leads us to the conclusion that understanding the temporal evolution of asymmetric neural networks requires considering the entangled dynamics of both eigenvectors and eigenvalues, which might bear consequences for learning and memory processes in these models. Considering the success of free random variables theory in a wide variety of disciplines, we hope that the results presented here foster the additional application of these ideas in the area of brain sciences.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
M I T Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
neuronal networks  
dc.subject
random matrix theory  
dc.subject
eigenvectors  
dc.subject
collective dynamics  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
From Synaptic Interactions to Collective Dynamics in Random Neuronal Networks Models: Critical Role of Eigenvectors and Transient Behavior  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-08T15:19:40Z  
dc.journal.volume
32  
dc.journal.number
2  
dc.journal.pagination
395-423  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Gudowska Nowak, E.. Jagiellonian University; Polonia  
dc.description.fil
Fil: Nowak, M. A.. Jagiellonian University; Polonia  
dc.description.fil
Fil: Chialvo, Dante Renato. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ochab, J. K.. Jagiellonian University; Polonia  
dc.description.fil
Fil: Tarnowski, W.. Jagiellonian University; Polonia  
dc.journal.title
Neural Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mitpressjournals.org/doi/abs/10.1162/neco_a_01253  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1162/neco_a_01253