Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Quantifying the Bayesian Evidence for a Planet in Radial Velocity Data

Nelson, Benjamin E.; Ford, Eric B.; Buchner, Johannes; Cloutier, Ryan; Díaz, Rodrigo FernandoIcon ; Faria, Joaõ P.; Hara, Nathan C.; Rajpaul, Vinesh M.; Rukdee, Surangkhana
Fecha de publicación: 02/2020
Editorial: IOP Publishing
Revista: Astronomical Journal
ISSN: 0004-6256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

We present results from a data challenge posed to the radial velocity (RV) community: Namely, to quantify the Bayesian "evidence"for n = {0, 1, 2, 3} planets in a set of synthetically generated RV data sets containing a range of planet signals. Participating teams were provided the same likelihood function and set of priors to use in their analysis. They applied a variety of methods to estimate the marginal likelihood for each n-planet model, including cross-validation, the Laplace approximation, importance sampling, and nested sampling. We found the dispersion in across different methods grew with increasing n-planet models: ∼3 for zero planets, ∼10 for one planet, ∼102-103 for two planets, and >104 for three planets. Most internal estimates of uncertainty in for individual methods significantly underestimated the observed dispersion across all methods. Methods that adopted a Monte Carlo approach by comparing estimates from multiple runs yielded plausible uncertainties. Finally, two classes of numerical algorithms (those based on importance and nested samplers) arrived at similar conclusions regarding the ratio of for n- A nd (n + 1)-planet models. One analytic method (the Laplace approximation) demonstrated comparable performance. We express both optimism and caution: We demonstrate that it is practical to perform rigorous Bayesian model comparison for models of ≤3 planets, yet robust planet discoveries require researchers to better understand the uncertainty in and its connections to model selection.
Palabras clave: Exoplanet detection methods , Radial velocity , Astrostatistics techniques , Model selection , Time series analysis , Algorithms , Bayes factor , Nested sampling , Importance sampling
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.092Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/168168
DOI: http://dx.doi.org/10.3847/1538-3881/ab5190
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Nelson, Benjamin E.; Ford, Eric B.; Buchner, Johannes; Cloutier, Ryan; Díaz, Rodrigo Fernando; et al.; Quantifying the Bayesian Evidence for a Planet in Radial Velocity Data; IOP Publishing; Astronomical Journal; 159; 2; 2-2020; 1-34
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES