Mostrar el registro sencillo del ítem

dc.contributor.author
Johnson, Thomas F.  
dc.contributor.author
Isaac, Nick J. B.  
dc.contributor.author
Paviolo, Agustin Javier  
dc.contributor.author
González Suárez, Manuela  
dc.date.available
2022-09-08T18:00:53Z  
dc.date.issued
2021-01  
dc.identifier.citation
Johnson, Thomas F.; Isaac, Nick J. B.; Paviolo, Agustin Javier; González Suárez, Manuela; Handling missing values in trait data; Wiley Blackwell Publishing, Inc; Global Ecology and Biogeography; 30; 1; 1-2021; 51-62  
dc.identifier.issn
1466-822X  
dc.identifier.uri
http://hdl.handle.net/11336/168014  
dc.description.abstract
Aim: Trait data are widely used in ecological and evolutionary phylogenetic comparative studies, but often values are not available for all species of interest. Traditionally, researchers have excluded species without data from analyses, but estimation of missing values using imputation has been proposed as a better approach. However, imputation methods have largely been designed for randomly missing data, whereas trait data are often not missing at random (e.g., more data for bigger species). Here, we evaluate the performance of approaches for handling missing values when considering biased datasets. Location: Any. Time period: Any. Major taxa studied: Any. Methods: We simulated continuous traits and separate response variables to test the performance of nine imputation methods and complete-case analysis (excluding missing values from the dataset) under biased missing data scenarios. We characterized performance by estimating the error in imputed trait values (deviation from the true value) and inferred trait–response relationships (deviation from the true relationship between a trait and response). Results: Generally, Rphylopars imputation produced the most accurate estimate of missing values and best preserved the response–trait slope. However, estimates of missing data were still inaccurate, even with only 5% of values missing. Under severe biases, errors were high with every approach. Imputation was not always the best option, with complete-case analysis frequently outperforming Mice imputation and, to a lesser degree, BHPMF imputation. Mice, a popular approach, performed poorly when the response variable was excluded from the imputation model. Main conclusions: Imputation can handle missing data effectively in some conditions but is not always the best solution. None of the methods we tested could deal effectively with severe biases, which can be common in trait datasets. We recommend rigorous data checking for biases before and after imputation and propose variables that can assist researchers working with incomplete datasets to detect data biases and minimize errors.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BHPMF  
dc.subject
FUNCTIONAL TRAIT  
dc.subject
IMPUTATION  
dc.subject
LIFE-HISTORY TRAIT  
dc.subject
MAR  
dc.subject
MCAR  
dc.subject
MISSING DATA  
dc.subject
MNAR  
dc.subject
MULTIPLE IMPUTATION CHAINED EQUATIONS  
dc.subject
RPHYLOPARS  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Handling missing values in trait data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-05-06T16:47:42Z  
dc.journal.volume
30  
dc.journal.number
1  
dc.journal.pagination
51-62  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Johnson, Thomas F.. University of Reading; Reino Unido  
dc.description.fil
Fil: Isaac, Nick J. B.. Centre For Ecology And Hydrology; Reino Unido  
dc.description.fil
Fil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Centro de Investigaciones del Bosque Atlántico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina  
dc.description.fil
Fil: González Suárez, Manuela. University of Reading; Reino Unido  
dc.journal.title
Global Ecology and Biogeography  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/geb.13185  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/geb.13185