Artículo
Silicon fertilization increases gas-exchange and biomass by silicophytolith deposition in the leaves of contrasting drought-tolerant sugarcane cultivars under well-watered conditions
Sartori Camargo, Mônica; Fernández Honaine, Mariana
; Osterrieth, Margarita Luisa; Bozza, Natália Ganzaroli; da Mota Silva, Vicente; Benvenuto, María Laura
; de Almeida Silva, Marcelo
Fecha de publicación:
07/2021
Editorial:
Springer
Revista:
Plant and Soil
ISSN:
0032-079X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Purpose: Silicon (Si) fertilization provides benefits to sugarcane. However, information remain scarce about the relationship between Si fertilization, gas exchange responses, biomass and silicophytolith accumulation in contrasting drought tolerant sugarcane cultivars under well-watered conditions Methods: Sugarcane cultivars (drought-tolerant and drought-sensitive) were grown in pots containing soil with low available Si and were treated (at rates equivalent to 0, 250, 500, 750, and 1000 kg ha−1 Si) with Si as silicate. The silicophytolith contents, morphotype descriptions, Si concentrations and gas exchange were evaluated in the top visible dewlap leaves. Stalk length and stalk biomass were also evaluated. Results: The silicophytolith, Si contents, net CO2 assimilation rate (A), plant transpiration (E), stomatal conductance (gs) and electron transport rate (ETR) of leaves and fresh biomass and length of stalks increased linearly as functions of the Si application rate, independent of cultivar. RB86-7515 showed the highest stalk length, fresh stalk and green leaf biomass, relative water content, and water potential, while RB85-5536 showed superior values for A, E, gs, and ETR. Conclusions: Si fertilization improved photosynthesis, transpiration, stalk length, and stalk biomass production in sugarcane. The highest silicophytolith content was reflected in a diversity of silicified cells, which may favor a higher photosynthesis and biomass. The increase of silicification in stomata complexes and trichomes with Si may be associated to a higher Si availability and transpiration. Contrasting drought-tolerant cultivars showed similar silicification and gas exchange responses with Si. Considering these benefits, Si should be included in the fertilization program of sugarcane.
Palabras clave:
ABSORPTION
,
PLANT NUTRITION
,
SACCHARUM SPP
,
SILICA
,
SILICATE
,
SOIL
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IIPROSAM)
Articulos de INSTITUTO DE INVESTIGACIONES EN PRODUCCION, SANIDAD Y AMBIENTE
Articulos de INSTITUTO DE INVESTIGACIONES EN PRODUCCION, SANIDAD Y AMBIENTE
Articulos(IIMYC)
Articulos de INSTITUTO DE INVESTIGACIONES MARINAS Y COSTERAS
Articulos de INSTITUTO DE INVESTIGACIONES MARINAS Y COSTERAS
Citación
Sartori Camargo, Mônica; Fernández Honaine, Mariana; Osterrieth, Margarita Luisa; Bozza, Natália Ganzaroli; da Mota Silva, Vicente; et al.; Silicon fertilization increases gas-exchange and biomass by silicophytolith deposition in the leaves of contrasting drought-tolerant sugarcane cultivars under well-watered conditions; Springer; Plant and Soil; 466; 1-2; 7-2021; 581-595
Compartir
Altmétricas