Mostrar el registro sencillo del ítem

dc.contributor.author
Londoño Hernandez, Liliana  
dc.contributor.author
Ruiz, Héctor A.  
dc.contributor.author
Ramírez Toro, Cristina  
dc.contributor.author
Ascacio Valdes, Alberto  
dc.contributor.author
Rodriguez Herrera, Raúl  
dc.contributor.author
Aguilera Carbo, Antonio  
dc.contributor.author
Tubio, Gisela  
dc.contributor.author
Picó, Guillermo Alfredo  
dc.contributor.author
Prado Barragan, Arely  
dc.contributor.author
Gutierrez Sanchez, Gerardo  
dc.contributor.author
Aguilar, Cristóbal Noé  
dc.contributor.other
Kumar Arora, Naveen  
dc.contributor.other
Mishra, Jitendra  
dc.contributor.other
Mishra, Vaibhav  
dc.date.available
2022-09-07T18:02:51Z  
dc.date.issued
2020  
dc.identifier.citation
Londoño Hernandez, Liliana ; Ruiz, Héctor A.; Ramírez Toro, Cristina; Ascacio Valdes, Alberto; Rodriguez Herrera, Raúl; et al.; Advantages and Progress Innovations of Solid-State Fermentation to Produce Industrial Enzymes; Springer; 2020; 87-117  
dc.identifier.isbn
978-981-15-1710-5  
dc.identifier.uri
http://hdl.handle.net/11336/167795  
dc.description.abstract
Industrial enzymes are biocatalysts that are commercially used in a variety ofcommercial sectors such as pharmaceuticals, chemical production, biofuels, food and beverages, and consumer products. Due to advancements in recentyears, biocatalysts are considered more economical than use of whole cells andcan be used as a unit operation within a process to generate the desired productof interest. Industrial biological catalysis through enzymes has experienced rapidgrowth in recent years due to their ability to operate at mild conditions, highspecificity, and high productivity. Industrial enzymes can be produced by bothsubmerged fermentation (SmF) and solid-state fermentation (SSF). In contrast tothe first process, the second bioprocess (SSF) is the cultivation of microorganismsunder controlled conditions in the absence of free water. Examples of bioproductsof SSF include industrial enzymes, fuels, and nutrient-enriched animalfeeds. Most industrial enzymes are manufactured using the traditional bioprocessof SmF, where microbial cells are suspended in a large volume of water thatis stirred and aerated using mechanical devices; such culture conditions dictatethe overall physiological behavior of microorganisms provoking biochemicaland structural changes affecting the quantity and activity of biocatalysts produced.Among the main advantages of SSF over SmF is a higher volumetricproductivity, secretion facilities to get extracellular bioproducts with higher stability,being usually simpler with lower energy requirements, resembling of thenatural habitat of some microorganisms, and easier downstream processing. Inthis chapter we summarize, compare, analyze, and discuss the technological,biochemical, and microbiological advantages of SSF to produce industrialenzymes. Furthermore, culture conditions, aggregation and diffusional phenomena,bioreactors, genetic expression, and protein regulation are covered.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
fermentation  
dc.subject
solid state  
dc.subject
fungi  
dc.subject.classification
Otras Biotecnología del Medio Ambiente  
dc.subject.classification
Biotecnología del Medio Ambiente  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Advantages and Progress Innovations of Solid-State Fermentation to Produce Industrial Enzymes  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2021-09-06T21:13:49Z  
dc.journal.pagination
87-117  
dc.journal.pais
Malasia  
dc.journal.ciudad
Singapur  
dc.description.fil
Fil: Londoño Hernandez, Liliana. Universidad Autonoma de Coahuila; México  
dc.description.fil
Fil: Ruiz, Héctor A.. Universidad Nacional Autonoma de Mexico. Colegio de Ciencia y Tecnología; México  
dc.description.fil
Fil: Ramírez Toro, Cristina. Universidad del Valle; Colombia  
dc.description.fil
Fil: Ascacio Valdes, Alberto. Universidad Autónoma de Coahuila; México  
dc.description.fil
Fil: Rodriguez Herrera, Raúl. Universidad Autónoma de Coahuila; México  
dc.description.fil
Fil: Aguilera Carbo, Antonio. Universidad Autónoma Agraria Antonio Narro; México  
dc.description.fil
Fil: Tubio, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina  
dc.description.fil
Fil: Picó, Guillermo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina  
dc.description.fil
Fil: Prado Barragan, Arely. Universidad Autónoma Metropolitana; México  
dc.description.fil
Fil: Gutierrez Sanchez, Gerardo. Georgia State University; Estados Unidos  
dc.description.fil
Fil: Aguilar, Cristóbal Noé. Universidad Autónoma de Coahuila; México  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/book/10.1007/978-981-15-1710-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-981-15-1710-5_4  
dc.conicet.paginas
679  
dc.source.titulo
Microbial Enzymes: Roles and Applications in Industries