Mostrar el registro sencillo del ítem
dc.contributor.author
Londoño Hernandez, Liliana
dc.contributor.author
Ruiz, Héctor A.
dc.contributor.author
Ramírez Toro, Cristina
dc.contributor.author
Ascacio Valdes, Alberto
dc.contributor.author
Rodriguez Herrera, Raúl
dc.contributor.author
Aguilera Carbo, Antonio
dc.contributor.author
Tubio, Gisela
dc.contributor.author
Picó, Guillermo Alfredo
dc.contributor.author
Prado Barragan, Arely
dc.contributor.author
Gutierrez Sanchez, Gerardo
dc.contributor.author
Aguilar, Cristóbal Noé
dc.contributor.other
Kumar Arora, Naveen
dc.contributor.other
Mishra, Jitendra
dc.contributor.other
Mishra, Vaibhav
dc.date.available
2022-09-07T18:02:51Z
dc.date.issued
2020
dc.identifier.citation
Londoño Hernandez, Liliana ; Ruiz, Héctor A.; Ramírez Toro, Cristina; Ascacio Valdes, Alberto; Rodriguez Herrera, Raúl; et al.; Advantages and Progress Innovations of Solid-State Fermentation to Produce Industrial Enzymes; Springer; 2020; 87-117
dc.identifier.isbn
978-981-15-1710-5
dc.identifier.uri
http://hdl.handle.net/11336/167795
dc.description.abstract
Industrial enzymes are biocatalysts that are commercially used in a variety ofcommercial sectors such as pharmaceuticals, chemical production, biofuels, food and beverages, and consumer products. Due to advancements in recentyears, biocatalysts are considered more economical than use of whole cells andcan be used as a unit operation within a process to generate the desired productof interest. Industrial biological catalysis through enzymes has experienced rapidgrowth in recent years due to their ability to operate at mild conditions, highspecificity, and high productivity. Industrial enzymes can be produced by bothsubmerged fermentation (SmF) and solid-state fermentation (SSF). In contrast tothe first process, the second bioprocess (SSF) is the cultivation of microorganismsunder controlled conditions in the absence of free water. Examples of bioproductsof SSF include industrial enzymes, fuels, and nutrient-enriched animalfeeds. Most industrial enzymes are manufactured using the traditional bioprocessof SmF, where microbial cells are suspended in a large volume of water thatis stirred and aerated using mechanical devices; such culture conditions dictatethe overall physiological behavior of microorganisms provoking biochemicaland structural changes affecting the quantity and activity of biocatalysts produced.Among the main advantages of SSF over SmF is a higher volumetricproductivity, secretion facilities to get extracellular bioproducts with higher stability,being usually simpler with lower energy requirements, resembling of thenatural habitat of some microorganisms, and easier downstream processing. Inthis chapter we summarize, compare, analyze, and discuss the technological,biochemical, and microbiological advantages of SSF to produce industrialenzymes. Furthermore, culture conditions, aggregation and diffusional phenomena,bioreactors, genetic expression, and protein regulation are covered.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
fermentation
dc.subject
solid state
dc.subject
fungi
dc.subject.classification
Otras Biotecnología del Medio Ambiente
dc.subject.classification
Biotecnología del Medio Ambiente
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Advantages and Progress Innovations of Solid-State Fermentation to Produce Industrial Enzymes
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2021-09-06T21:13:49Z
dc.journal.pagination
87-117
dc.journal.pais
Malasia
dc.journal.ciudad
Singapur
dc.description.fil
Fil: Londoño Hernandez, Liliana. Universidad Autonoma de Coahuila; México
dc.description.fil
Fil: Ruiz, Héctor A.. Universidad Nacional Autonoma de Mexico. Colegio de Ciencia y Tecnología; México
dc.description.fil
Fil: Ramírez Toro, Cristina. Universidad del Valle; Colombia
dc.description.fil
Fil: Ascacio Valdes, Alberto. Universidad Autónoma de Coahuila; México
dc.description.fil
Fil: Rodriguez Herrera, Raúl. Universidad Autónoma de Coahuila; México
dc.description.fil
Fil: Aguilera Carbo, Antonio. Universidad Autónoma Agraria Antonio Narro; México
dc.description.fil
Fil: Tubio, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina
dc.description.fil
Fil: Picó, Guillermo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Procesos Biotecnológicos y Químicos Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Procesos Biotecnológicos y Químicos Rosario; Argentina
dc.description.fil
Fil: Prado Barragan, Arely. Universidad Autónoma Metropolitana; México
dc.description.fil
Fil: Gutierrez Sanchez, Gerardo. Georgia State University; Estados Unidos
dc.description.fil
Fil: Aguilar, Cristóbal Noé. Universidad Autónoma de Coahuila; México
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/book/10.1007/978-981-15-1710-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-981-15-1710-5_4
dc.conicet.paginas
679
dc.source.titulo
Microbial Enzymes: Roles and Applications in Industries
Archivos asociados