Mostrar el registro sencillo del ítem
dc.contributor.author
Garí Núñez, Yisel
dc.contributor.author
Monge Bosdari, David Antonio
dc.contributor.author
Pacini Naumovich, Elina Rocío
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.contributor.author
Garcia Garino, Carlos Gabriel
dc.date.available
2022-09-07T15:40:24Z
dc.date.issued
2021-06
dc.identifier.citation
Garí Núñez, Yisel; Monge Bosdari, David Antonio; Pacini Naumovich, Elina Rocío; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Reinforcement learning-based application autoscaling in the cloud: a survey; Elsevier; Engineering Applications Of Artificial Intelligence; 102; 6-2021; 1-23
dc.identifier.issn
0952-1976
dc.identifier.uri
http://hdl.handle.net/11336/167755
dc.description.abstract
Reinforcement Learning (RL) has demonstrated a great potential for automatically solving decision-making problems in complex, uncertain environments. RL proposes a computational approach that allows learning through interaction in an environment with stochastic behavior, where agents take actions to maximize some cumulative short-term and long-term rewards. Some of the most impressive results have been shown in Game Theory where agents exhibited superhuman performance in games like Go or Starcraft 2, which led to its gradual adoption in many other domains, including Cloud Computing. Therefore, RL appears as a promising approach for Autoscaling in Cloud since it is possible to learn transparent (with no human intervention), dynamic (no static plans), and adaptable (constantly updated) resource management policies to execute applications. These are three important distinctive aspects to consider in comparison with other widely used autoscaling policies that are defined in an ad-hoc way or statically computed as in solutions based on meta-heuristics. Autoscaling exploits the Cloud elasticity to optimize the execution of applications according to given optimization criteria, which demands deciding when and how to scale up/down computational resources and how to assign them to the upcoming processing workload. Such actions have to be taken considering that the Cloud is a dynamic and uncertain environment. Motivated by this, many works apply RL to the autoscaling problem in the Cloud. In this work, we exhaustively survey those proposals from major venues, and uniformly compare them based on a set of proposed taxonomies. We also discuss open problems and prospective research in the area.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUTOSCALING
dc.subject
CLOUD APPLICATION
dc.subject
CLOUD COMPUTING
dc.subject
REINFORCEMENT LEARNING
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Reinforcement learning-based application autoscaling in the cloud: a survey
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-16T20:38:55Z
dc.journal.volume
102
dc.journal.pagination
1-23
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Garí Núñez, Yisel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina
dc.description.fil
Fil: Monge Bosdari, David Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina
dc.journal.title
Engineering Applications Of Artificial Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0952197621001354
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.engappai.2021.104288
Archivos asociados