Mostrar el registro sencillo del ítem

dc.contributor.author
Garí Núñez, Yisel  
dc.contributor.author
Monge Bosdari, David Antonio  
dc.contributor.author
Pacini Naumovich, Elina Rocío  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Garcia Garino, Carlos Gabriel  
dc.date.available
2022-09-07T15:40:24Z  
dc.date.issued
2021-06  
dc.identifier.citation
Garí Núñez, Yisel; Monge Bosdari, David Antonio; Pacini Naumovich, Elina Rocío; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Reinforcement learning-based application autoscaling in the cloud: a survey; Elsevier; Engineering Applications Of Artificial Intelligence; 102; 6-2021; 1-23  
dc.identifier.issn
0952-1976  
dc.identifier.uri
http://hdl.handle.net/11336/167755  
dc.description.abstract
Reinforcement Learning (RL) has demonstrated a great potential for automatically solving decision-making problems in complex, uncertain environments. RL proposes a computational approach that allows learning through interaction in an environment with stochastic behavior, where agents take actions to maximize some cumulative short-term and long-term rewards. Some of the most impressive results have been shown in Game Theory where agents exhibited superhuman performance in games like Go or Starcraft 2, which led to its gradual adoption in many other domains, including Cloud Computing. Therefore, RL appears as a promising approach for Autoscaling in Cloud since it is possible to learn transparent (with no human intervention), dynamic (no static plans), and adaptable (constantly updated) resource management policies to execute applications. These are three important distinctive aspects to consider in comparison with other widely used autoscaling policies that are defined in an ad-hoc way or statically computed as in solutions based on meta-heuristics. Autoscaling exploits the Cloud elasticity to optimize the execution of applications according to given optimization criteria, which demands deciding when and how to scale up/down computational resources and how to assign them to the upcoming processing workload. Such actions have to be taken considering that the Cloud is a dynamic and uncertain environment. Motivated by this, many works apply RL to the autoscaling problem in the Cloud. In this work, we exhaustively survey those proposals from major venues, and uniformly compare them based on a set of proposed taxonomies. We also discuss open problems and prospective research in the area.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AUTOSCALING  
dc.subject
CLOUD APPLICATION  
dc.subject
CLOUD COMPUTING  
dc.subject
REINFORCEMENT LEARNING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Reinforcement learning-based application autoscaling in the cloud: a survey  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-16T20:38:55Z  
dc.journal.volume
102  
dc.journal.pagination
1-23  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Garí Núñez, Yisel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina  
dc.description.fil
Fil: Monge Bosdari, David Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina  
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina  
dc.journal.title
Engineering Applications Of Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0952197621001354  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.engappai.2021.104288