Mostrar el registro sencillo del ítem
dc.contributor.author
Dickenstein, Alicia Marcela
dc.contributor.author
Emiris, Ioannis
dc.contributor.author
Karasoulou, Anna
dc.contributor.other
Dokken, Tor
dc.contributor.other
Muntingh, Georg
dc.date.available
2022-09-07T10:21:09Z
dc.date.issued
2014
dc.identifier.citation
Dickenstein, Alicia Marcela; Emiris, Ioannis; Karasoulou, Anna; Plane mixed discriminants and toric Jacobians; Springer; 10; 2014; 105-121
dc.identifier.isbn
978-3-319-08635-4
dc.identifier.issn
1866-6795
dc.identifier.uri
http://hdl.handle.net/11336/167664
dc.description.abstract
Polynomial algebra offers a standard approach to handle severalproblems in geometric modeling. A key tool is the discriminant of aunivariate polynomial, or of a well-constrained system of polynomialequations, which expresses the existence of a multiple root. We describediscriminants in a general context, and focus on exploiting the sparsenessof polynomials via the theory of Newton polytopes and sparse (or toric)elimination. We concentrate on bivariate polynomials and establish anoriginal formula that relates the discriminant of two bivariate Laurentpolynomials with fixed support, with the sparse resultant of thesepolynomials and their toric Jacobian. This allows us to obtain a newproof for the bidegree formula of the discriminant as well as to establishmultiplicativity formulas arising when one polynomial can be factored.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
discriminant
dc.subject
implicitization
dc.subject
toric Jacobian
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Plane mixed discriminants and toric Jacobians
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2022-05-04T17:17:59Z
dc.identifier.eissn
1866-6809
dc.journal.volume
10
dc.journal.pagination
105-121
dc.journal.pais
Alemania
dc.journal.ciudad
Cham
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Emiris, Ioannis. University of Athens; Grecia
dc.description.fil
Fil: Karasoulou, Anna. University of Athens; Grecia
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-08635-4_6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-08635-4_6
dc.conicet.paginas
323
dc.source.titulo
Advances in ShApes, Geometry, and Algebra: Results from the Marie Curie Initial Training Network
dc.conicet.nroedicion
1
Archivos asociados