Mostrar el registro sencillo del ítem
dc.contributor.author
Corrales Alvarez, J. D.
dc.contributor.author
Munilla, S.
dc.contributor.author
Cantet, Rodolfo Juan Carlos
dc.date.available
2017-05-19T19:31:45Z
dc.date.issued
2015-08
dc.identifier.citation
Corrales Alvarez, J. D.; Munilla, S.; Cantet, Rodolfo Juan Carlos; Polynomial order selection in random regression models via penalizing adaptively the likelihood; Wiley; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 132; 4; 8-2015; 281-288
dc.identifier.issn
0931-2668
dc.identifier.uri
http://hdl.handle.net/11336/16761
dc.description.abstract
Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, ‘penalizing adaptively the likelihood’ (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60 513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the ‘true’ model was within the set of candidates.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Legendre Polynomial
dc.subject
Model Selection
dc.subject
Penalizing Adaptively the Likelihood
dc.subject
Random Regressions
dc.subject.classification
Otras Producción Animal y Lechería
dc.subject.classification
Producción Animal y Lechería
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Polynomial order selection in random regression models via penalizing adaptively the likelihood
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-05-18T21:18:29Z
dc.journal.volume
132
dc.journal.number
4
dc.journal.pagination
281-288
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Hoboken
dc.description.fil
Fil: Corrales Alvarez, J. D.. Universidad de Antioquia; Colombia. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina
dc.description.fil
Fil: Munilla, S.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina
dc.description.fil
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/jbg.12130
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/jbg.12130/abstract
Archivos asociados