Mostrar el registro sencillo del ítem

dc.contributor.author
Valencia, Felipe J.  
dc.contributor.author
Amigo, Nicolás  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.date.available
2022-09-06T10:59:58Z  
dc.date.issued
2021-04  
dc.identifier.citation
Valencia, Felipe J.; Amigo, Nicolás; Bringa, Eduardo Marcial; Tension-compression behavior in gold nanoparticle arrays: A molecular dynamics study; IOP Publishing; Nanotechnology; 32; 14; 4-2021; 1-13  
dc.identifier.issn
0957-4484  
dc.identifier.uri
http://hdl.handle.net/11336/167462  
dc.description.abstract
The mechanical properties of Au nanoparticle arrays are studied by tensile and compressive deformation, using large-scale molecular dynamics simulations which include up to 16 million atoms. Our results show that mechanical response is dominated by nanoparticle size. For compression, strength versus particle size shows similar trends in strength than full-density nanocrystals. For diameters (d) below 10 nm there is an inverse Hall-Petch (HP) regime. Beyond a maximum at 10 nm, strength decreases following a HP d-1/2dependence. In both regimes, interparticle sliding and dislocation activity play a role. The array with 10 nm nanoparticles showed the same mechanical properties than a polycrystalline bulk with the same grain size. This enhanced strength, for a material nearly 20% lighter, is attributed to the absence of grain boundary junctions, and to the array geometry, which leads to constant flow stress by means of densification, nanoparticle rotation, and dislocation activity. For tension, there is something akin to brittle fracture for large grain sizes, with NPs debonding perpendicular to the traction direction. The Johnson-Kendall-Roberts contact theory was successfully applied to describe the superlattice porosity, predicting also the array strength within 10% of molecular dynamics values. Although this study is focused on Au nanoparticles, our findings could be helpful in future studies of similar arrays with NPs of different kinds of materials.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
NANOPARTICLES  
dc.subject
PLASTICITY  
dc.subject
SUPERLATTICES  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Tension-compression behavior in gold nanoparticle arrays: A molecular dynamics study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-16T20:39:59Z  
dc.journal.volume
32  
dc.journal.number
14  
dc.journal.pagination
1-13  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Valencia, Felipe J.. Universidad Mayor; Chile. Universidad de Santiago de Chile; Chile  
dc.description.fil
Fil: Amigo, Nicolás. Universidad Mayor; Chile  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Universidad Mayor; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.journal.title
Nanotechnology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6528/abd5e8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1361-6528/abd5e8