Mostrar el registro sencillo del ítem
dc.contributor.author
Valencia, Felipe J.
dc.contributor.author
Amigo, Nicolás
dc.contributor.author
Bringa, Eduardo Marcial

dc.date.available
2022-09-06T10:59:58Z
dc.date.issued
2021-04
dc.identifier.citation
Valencia, Felipe J.; Amigo, Nicolás; Bringa, Eduardo Marcial; Tension-compression behavior in gold nanoparticle arrays: A molecular dynamics study; IOP Publishing; Nanotechnology; 32; 14; 4-2021; 1-13
dc.identifier.issn
0957-4484
dc.identifier.uri
http://hdl.handle.net/11336/167462
dc.description.abstract
The mechanical properties of Au nanoparticle arrays are studied by tensile and compressive deformation, using large-scale molecular dynamics simulations which include up to 16 million atoms. Our results show that mechanical response is dominated by nanoparticle size. For compression, strength versus particle size shows similar trends in strength than full-density nanocrystals. For diameters (d) below 10 nm there is an inverse Hall-Petch (HP) regime. Beyond a maximum at 10 nm, strength decreases following a HP d-1/2dependence. In both regimes, interparticle sliding and dislocation activity play a role. The array with 10 nm nanoparticles showed the same mechanical properties than a polycrystalline bulk with the same grain size. This enhanced strength, for a material nearly 20% lighter, is attributed to the absence of grain boundary junctions, and to the array geometry, which leads to constant flow stress by means of densification, nanoparticle rotation, and dislocation activity. For tension, there is something akin to brittle fracture for large grain sizes, with NPs debonding perpendicular to the traction direction. The Johnson-Kendall-Roberts contact theory was successfully applied to describe the superlattice porosity, predicting also the array strength within 10% of molecular dynamics values. Although this study is focused on Au nanoparticles, our findings could be helpful in future studies of similar arrays with NPs of different kinds of materials.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
NANOPARTICLES
dc.subject
PLASTICITY
dc.subject
SUPERLATTICES
dc.subject.classification
Física de los Materiales Condensados

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Tension-compression behavior in gold nanoparticle arrays: A molecular dynamics study
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-16T20:39:59Z
dc.journal.volume
32
dc.journal.number
14
dc.journal.pagination
1-13
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Valencia, Felipe J.. Universidad Mayor; Chile. Universidad de Santiago de Chile; Chile
dc.description.fil
Fil: Amigo, Nicolás. Universidad Mayor; Chile
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Universidad Mayor; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.journal.title
Nanotechnology

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6528/abd5e8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1361-6528/abd5e8
Archivos asociados