Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Heat transfer process with solid-solid interface: Analytical and numerical solutions

Rubio, Aurora Diana; Tarzia, Domingo AlbertoIcon ; Umbricht, Guillermo FedericoIcon
Fecha de publicación: 02/09/2021
Editorial: World Scientific and Engineering Academy and Society
Revista: Wseas Transactions on Mathematics
ISSN: 1109-2769
e-ISSN: 2224-2880
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

This work is aimed at the study and analysis of the heat transport on a metal bar of length L with a solid-solid interface. The process is assumed to be developed along one direction, across two homogeneous and isotropic materials. Analytical and numerical solutions are obtained under continuity conditions at the interface, that is a perfect assembly. The lateral side is assumed to be isolated and a constant thermal source is located at the left-boundary while the right-end stays free allowing the heat to transfer to the surrounding fluid by a convective process. The differences between the analytic solution and temperature measurements at any point on the right would indicate the presence of discontinuities. The greater these differences, the greater the discontinuity in the interface due to thermal resistances, providing a measure of its propagation from the interface and they could be modeled as temperature perturbations. The problem of interest may be described by a parabolic equation with initial, interface and boundary conditions, where the thermal properties, the conductivity and diffusivity coefficients, are piecewise constant functions. The analytic solution is derived by using Fourier methods. Special attention is given to the Sturm-Liouville problem that arises when deriving the solution, since a complicated eigenvalue equation must to be solved. Numerical simulations are conducted by using finite difference schemes where its convergence and stability properties are discussed along with physical interpretations of the results.
Palabras clave: EIGENVALUES PROBLEMS , HEAT EQUATION , MATHEMATICAL MODELING , SOLID-SOLID INTERFACE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.748Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/167413
URL: https://wseas.com/journals/articles.php?id=533
DOI: http://dx.doi.org/10.37394/23206.2021.20.42
URL: https://arxiv.org/abs/2110.14542
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Rubio, Aurora Diana; Tarzia, Domingo Alberto; Umbricht, Guillermo Federico; Heat transfer process with solid-solid interface: Analytical and numerical solutions; World Scientific and Engineering Academy and Society; Wseas Transactions on Mathematics; 20; 2-9-2021; 404-414
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES