Mostrar el registro sencillo del ítem

dc.contributor.author
Di Francesco, Francisco  
dc.contributor.author
Sanca, Gabriel Andrés  
dc.contributor.author
Quinteros, Cynthia Paula  
dc.date.available
2022-09-01T14:02:41Z  
dc.date.issued
2021-11  
dc.identifier.citation
Di Francesco, Francisco; Sanca, Gabriel Andrés; Quinteros, Cynthia Paula; Spatiotemporal evolution of resistance state in simulated memristive networks; American Institute of Physics; Applied Physics Letters; 119; 19; 11-2021; 1-5; 193502  
dc.identifier.issn
0003-6951  
dc.identifier.uri
http://hdl.handle.net/11336/167157  
dc.description.abstract
Originally studied for their suitability to store information compactly, memristive networks are now being analyzed as implementations of neuromorphic circuits. An extremely high number of elements is, thus, mandatory. To surpass the limited achievable connectivity - due to the featuring size - exploiting self-assemblies has been proposed as an alternative, in turn posing new challenges. In an attempt for offering insight on what to expect when characterizing the collective electrical response of switching assemblies, in this work, networks of memristive elements are simulated. Collective electrical behavior and maps of resistance states are characterized upon different electrical stimuli. By comparing the response of homogeneous and heterogeneous networks, we delineate differences that might be experimentally observed when the number of memristive units is scaled up and disorder arises as an inevitable feature.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Memristive networks  
dc.subject
Memristor  
dc.subject
Self assembly  
dc.subject
SPICE  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Spatiotemporal evolution of resistance state in simulated memristive networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-31T14:40:18Z  
dc.identifier.eissn
1077-3118  
dc.journal.volume
119  
dc.journal.number
19  
dc.journal.pagination
1-5; 193502  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Di Francesco, Francisco. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina  
dc.description.fil
Fil: Sanca, Gabriel Andrés. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina  
dc.description.fil
Fil: Quinteros, Cynthia Paula. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina  
dc.journal.title
Applied Physics Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0067048  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0067048