Mostrar el registro sencillo del ítem
dc.contributor.author
Banerjee, Saikat
dc.contributor.author
Simonetti, Franco Lucio
dc.contributor.author
Detrois, Kira E.
dc.contributor.author
Kaphle, Anubhav
dc.contributor.author
Mitra, Raktim
dc.contributor.author
Nagial, Rahul
dc.contributor.author
Söding, Johannes
dc.date.available
2022-09-01T13:52:16Z
dc.date.issued
2021-12
dc.identifier.citation
Banerjee, Saikat; Simonetti, Franco Lucio; Detrois, Kira E.; Kaphle, Anubhav; Mitra, Raktim; et al.; Tejaas: reverse regression increases power for detecting trans-eQTLs; BioMed Central Ltd; Genome Biology; 22; 1; 12-2021; 1-16
dc.identifier.issn
1474-760X
dc.identifier.uri
http://hdl.handle.net/11336/167151
dc.description.abstract
Trans-acting expression quantitative trait loci (trans-eQTLs) account for ≥70% expression heritability and could therefore facilitate uncovering mechanisms underlying the origination of complex diseases. Identifying trans-eQTLs is challenging because of small effect sizes, tissue specificity, and a severe multiple-testing burden. Tejaas predicts trans-eQTLs by performing L2-regularized “reverse” multiple regression of each SNP on all genes, aggregating evidence from many small trans-effects while being unaffected by the strong expression correlations. Combined with a novel unsupervised k-nearest neighbor method to remove confounders, Tejaas predicts 18851 unique trans-eQTLs across 49 tissues from GTEx. They are enriched in open chromatin, enhancers, and other regulatory regions. Many overlap with disease-associated SNPs, pointing to tissue-specific transcriptional regulation mechanisms.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
BioMed Central Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Trans-eQTLs
dc.subject
Multiple linear regression
dc.subject
GTEx
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Tejaas: reverse regression increases power for detecting trans-eQTLs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-19T18:12:50Z
dc.journal.volume
22
dc.journal.number
1
dc.journal.pagination
1-16
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Banerjee, Saikat. Max Planck Institute For Biophysical Chemistry; Alemania
dc.description.fil
Fil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Max Planck Institute For Biophysical Chemistry; Alemania
dc.description.fil
Fil: Detrois, Kira E.. Max Planck Institute For Biophysical Chemistry; Alemania. Universität Göttingen; Alemania
dc.description.fil
Fil: Kaphle, Anubhav. Universität Göttingen; Alemania. Max Planck Institute For Biophysical Chemistry; Alemania
dc.description.fil
Fil: Mitra, Raktim. Indian Institute of Technology; India
dc.description.fil
Fil: Nagial, Rahul. Indian Institute of Technology; India
dc.description.fil
Fil: Söding, Johannes. Max Planck Institute For Biophysical Chemistry; Alemania. University of Göttingen; Alemania
dc.journal.title
Genome Biology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02361-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s13059-021-02361-8
Archivos asociados