Mostrar el registro sencillo del ítem

dc.contributor.author
Banerjee, Saikat  
dc.contributor.author
Simonetti, Franco Lucio  
dc.contributor.author
Detrois, Kira E.  
dc.contributor.author
Kaphle, Anubhav  
dc.contributor.author
Mitra, Raktim  
dc.contributor.author
Nagial, Rahul  
dc.contributor.author
Söding, Johannes  
dc.date.available
2022-09-01T13:52:16Z  
dc.date.issued
2021-12  
dc.identifier.citation
Banerjee, Saikat; Simonetti, Franco Lucio; Detrois, Kira E.; Kaphle, Anubhav; Mitra, Raktim; et al.; Tejaas: reverse regression increases power for detecting trans-eQTLs; BioMed Central Ltd; Genome Biology; 22; 1; 12-2021; 1-16  
dc.identifier.issn
1474-760X  
dc.identifier.uri
http://hdl.handle.net/11336/167151  
dc.description.abstract
Trans-acting expression quantitative trait loci (trans-eQTLs) account for ≥70% expression heritability and could therefore facilitate uncovering mechanisms underlying the origination of complex diseases. Identifying trans-eQTLs is challenging because of small effect sizes, tissue specificity, and a severe multiple-testing burden. Tejaas predicts trans-eQTLs by performing L2-regularized “reverse” multiple regression of each SNP on all genes, aggregating evidence from many small trans-effects while being unaffected by the strong expression correlations. Combined with a novel unsupervised k-nearest neighbor method to remove confounders, Tejaas predicts 18851 unique trans-eQTLs across 49 tissues from GTEx. They are enriched in open chromatin, enhancers, and other regulatory regions. Many overlap with disease-associated SNPs, pointing to tissue-specific transcriptional regulation mechanisms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Trans-eQTLs  
dc.subject
Multiple linear regression  
dc.subject
GTEx  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Tejaas: reverse regression increases power for detecting trans-eQTLs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-19T18:12:50Z  
dc.journal.volume
22  
dc.journal.number
1  
dc.journal.pagination
1-16  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Banerjee, Saikat. Max Planck Institute For Biophysical Chemistry; Alemania  
dc.description.fil
Fil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Max Planck Institute For Biophysical Chemistry; Alemania  
dc.description.fil
Fil: Detrois, Kira E.. Max Planck Institute For Biophysical Chemistry; Alemania. Universität Göttingen; Alemania  
dc.description.fil
Fil: Kaphle, Anubhav. Universität Göttingen; Alemania. Max Planck Institute For Biophysical Chemistry; Alemania  
dc.description.fil
Fil: Mitra, Raktim. Indian Institute of Technology; India  
dc.description.fil
Fil: Nagial, Rahul. Indian Institute of Technology; India  
dc.description.fil
Fil: Söding, Johannes. Max Planck Institute For Biophysical Chemistry; Alemania. University of Göttingen; Alemania  
dc.journal.title
Genome Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02361-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s13059-021-02361-8